dc.contributorGiraldo Trujillo, Luis Felipe
dc.contributorZambrano Jacobo, Andrés Felipe
dc.creatorAmaya Carreño, Juan David
dc.date.accessioned2022-07-29T12:25:59Z
dc.date.available2022-07-29T12:25:59Z
dc.date.created2022-07-29T12:25:59Z
dc.date.issued2022-06-28
dc.identifierhttp://hdl.handle.net/1992/59341
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.description.abstractEste trabajo continúa con el uso de Aprendizaje por Refuerzo Profundo (en inglés Deep Reinforcement Learning o DRL) en simulaciones híbridas en tiempo real (en inglés Real-Time Hybrid Simulation o RTHS) para diseñar un agente capaz de realizar las acciones de control de seguimiento y compensación de fase entre las respuestas de las particiones numérica y experimental del entorno de simulación. Los resultados obtenidos a partir de diferentes pruebas demuestran que el agente alcanzó un buen desempeño, incluso llegando a ser mejor en comparación a otras alternativas desarrolladas.
dc.description.abstractThis paper continues with the use of Deep Reinforcement Learning (DRL) in Real-Time Hybrid Simulation (RTHS) to design an agent capable of doing both tracking control and phase-lead compensation between the responses of the numeric partition and the experimental partition in a virtual environment for simulation. The results obtained from different tests proved that the agent performed very well to even be better than other alternatives developed before.
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherIngeniería Electrónica
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Eléctrica y Electrónica
dc.relationA. F. Niño, A. P. Betacur, P. Miranda, J.D. Amaya, M. G. Soto, C. E. Silva y L. F. Giraldo, Using Deep Reinforcement Learning to design a tracking controller for a Real-Time Hybrid Simulation benchmark problem, tesis BA, Departamento de Ingeniería Eléctrica y Electrónica, Universidad de los Andes, Bogotá, 2021.
dc.relationM. J. Harris y R. E. Christenson. (2020, jul.). Real-time hybrid simulation analysis of moat impacts in a base-isolated structure, Frontiers in Built Environment. DOI: http://dx.doi.org/10.3389/fbuil.2020.00120
dc.relationG. Ou, A. Maghareh, X. Gao, N. Castaneda y S. J. Dyke. (s.f.). Cyber-Physical Instrument for Real-time Hybrid Structural Testing (MRI). [Internet]. Disponible en https://engineering.purdue.edu/Bowen/Projects/All/cyberphysical-instrument-for-realtime-hybrid-structural-testing-mri/CIRST-Highlights.pdf
dc.relationE. E. Bas y M. A. Moustafa. (2020, jun.). Performance and Limitations of Real-Time Hybrid Simulation with Nonlinear Computational Substructures, Experimental Techniques. Vol. 44, pp. 715-734 (2020). DOI: https://doi.org/10.1007/s40799-020-00385-6
dc.relationC. E. Silva, D. Gomez, A. Maghareh, S. J. Dyke y B. F. Spencer Jr. (2020, en.) Benchmark control problem for real-time hybrid simulation, Mechanical Systems and Signal Processing. Vol. 135, n.° 106381, 2020. DOI: https://doi.org/10.1016/j.ymssp.2019.106381
dc.relationV. Mnih et al. (2015, febr.). Human-level control through deep reinforcement learning. Nature Vol. 518, pp. 529-533. DOI: https://doi.org/10.1038/nature14236
dc.relationD. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra y M. Riedmiller, Deterministic Policy Gradient Algorithms, en Proceedings of the 31st International Conference on Machine Learning, Beijing, China, 2014. En Proceedings of Machine Learning Research, Vol. 32(1), pp. 387-395. Disponible en https://www.davidsilver.uk/wp-content/uploads/2020/03/deterministic-policy-gradients.pdf
dc.relationR. S. Sutton, D. McAllester, S. Singh y Y. Mansour, Policy gradient methods for reinforcement learning with function approximation, en Neural Information Processing Systems 12, Florham Park, New Jersey, 1999, pp. 1057-1063.
dc.relationT. P. Lillicrap et al. (2016). Continuous control with deep reinforcement learning, CoRR, abs/1509.02971. Disponible en https://arxiv.org/abs/1509.02971
dc.relationS. Ioffe y C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, en International Conference on Machine Learning, 2015. Disponible en https://arxiv.org/abs/1502.03167
dc.relationMathWorks. (s.f.). Deep Learning in MATLAB [Internet]. Disponible en https://www.mathworks.com/help/deeplearning/ug/deep-learning-in-matlab.html
dc.relationN. P. Lawrence, M. G. Forbes, P. D. Loewen, D. G. McClement, J. U. Backstrom y R. B. Gopaluni. (2022). Deep Reinforcement Learning with Shallow Controllers: An Experimental Application to PID Tuning, ArXiv, abs/2111.07171. Disponible en https://arxiv.org/abs/2111.07171
dc.relationL. Chan. (2021, mzo. 06). 3 Common Problems with Neural Network Initialization. [Internet] Disponible en https://towardsdatascience.com/3-common-problems-with-neural-network-initialisation-5e6cacfcd8e6
dc.relationL. N. Smith, Cyclical Learning Rates for Training Neural Networks, en 2017 IEEE Winter Conference on Applications of Computer Vision, 2017. pp. 464-472. Disponible en https://arxiv.org/abs/1506.01186
dc.relationMathWorks. (s.f.). rlDDPGAgentOptions. [Internet] Disponible en https://www.mathworks.com/help/reinforcement-learning/ref/rlddpgagentoptions.html
dc.relationS. Zhang y R. S. Sutton. (2017). A Deeper Look at Experience Replay, ArXiv, abs/1712.01275. Disponible en https://arxiv.org/abs/1712.01275
dc.relationJ. E. Duque. (s.f.). 3. Controladores y acciones de control. [Internet]. Disponible en http://www.geocities.ws/joeldupar/control2/pid
dc.relationFundamentos del control de procesos usando el programa LVPROSIM, Lab-Volt Ltda., Canadá, 2004. Disponible en http://biblio3.url.edu.gt/Publi/Libros/2013/ManualesIng/FundamenP-O.pdf
dc.relationMathWorks. (s.f.). Train Reinforcement Learning Agents. [Internet] Disponible en https://www.mathworks.com/help/reinforcement-learning/ug/train-reinforcement-learning-agents.html
dc.relationC. Wu, A. Alomar y S. Jagwani. (2021, abr. 29) Lecture 19: Off-Policy Learning. [Internet]. Disponible en https://web.mit.edu/6.246/www/notes/L18-notes.pdf
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleAprendizaje por refuerzo profundo para la compensación de fase y control de seguimiento en simulación híbrida
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución