dc.contributorOsma Cruz, Johann Faccelo
dc.contributorMerkoçi, Arben
dc.contributorMedina Sánchez, Mariana
dc.contributorGonzález Butron, Edgar Antonio
dc.contributorCruz Jiménez, Juan Carlos
dc.contributorCentro de Microelectrónica de la Universidad de los Andes (CMUA)
dc.creatorSegura Gómez, Crhistian Camilo
dc.date.accessioned2022-08-01T15:58:27Z
dc.date.available2022-08-01T15:58:27Z
dc.date.created2022-08-01T15:58:27Z
dc.date.issued2022-06-27
dc.identifierhttp://hdl.handle.net/1992/59425
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.description.abstractThe research world is constantly advancing toward new inventions and expanding the knowledge boundaries. This comes with its challenges; for example, the recent increase in remote work worldwide impacts every industry, and science is no exception. One of these implications is that the number of researchers increased faster than in previous years. Not all research facilities are prepared to sustain this increment and do not have enough equipment for everyone to work; the most common factors are cost or space limitations. Some researchers started to develop their own measurement devices designed within the research specifications in consideration and some limits compared to commercial devices. Those devices cost a fraction of the commercial equipment and are built using low-cost components. This yields a great variety of electronics measurement devices; those devices also tend to be smaller than traditional lab equipment. Furthermore, they had lower consumption of power which means simpler and smaller supply sources, which allows the devices to be powered by batteries, thus making them portable. Moreover, some research groups are constantly improving their developments. Some even are open-source projects which allow the community to enhance its capabilities, like the addition of measurement techniques or the ability to make simultaneous measurements with a single device. Others even communicate between devices and from device to PC or smartphone. And with the great options available to store information in the cloud, some researchers create devices that keep the measurements in remote databases for further analysis.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherDoctorado en Ingeniería
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Eléctrica y Electrónica
dc.relationT. Dai, J. Fang, W. Yu, and G. Xie, ¿Enzyme Functionalized AuNPs and Glucometer-based Protein Detection,¿ in IOP Conference Series: Materials Science and Engineering, Jan. 2018, vol. 275, no. 1. doi: 10.1088/1757-899X/275/1/012010. [2] M. Nemiwal, T. C. Zhang, and D. Kumar, ¿Enzyme immobilized nanomaterials as electrochemical biosensors for detection of biomolecules,¿ Enzyme and Microbial Technology, vol. 156, p. 110006, May 2022, doi: 10.1016/J.ENZMICTEC.2022.110006. [3] M. Urbanowicz, K. Sadowska, A. Paziewska-Nowak, A. So¿datowska, and D. G. Pijanowska, ¿Biosensor based on coupled enzyme reactions for determination of arginase activity,¿ Bioelectrochemistry, vol. 146, p. 108137, Aug. 2022, doi: 10.1016/J.BIOELECHEM.2022.108137. [4] M. Sánchez-Paniagua López, E. Redondo-Gómez, and B. López-Ruiz, ¿Electrochemical enzyme biosensors based on calcium phosphate materials for tyramine detection in food samples,¿ Talanta, vol. 175, pp. 209¿216, Dec. 2017, doi: 10.1016/J.TALANTA.2017.07.033. [5] S. Kurbanoglu, C. Erkmen, and B. Uslu, ¿Frontiers in electrochemical enzyme based biosensors for food and drug analysis,¿ TrAC Trends in Analytical Chemistry, vol. 124, p. 115809, Mar. 2020, doi: 10.1016/J.TRAC.2020.115809. [6] L. F. Urrego, D. I. Lopez, K. A. Ramirez, C. Ramirez, and J. F. Osma, ¿Biomicrosystem design and fabrication for the human papilloma virus 16 detection,¿ Sensors and Actuators, B: Chemical, vol. 207, no. Part A, pp. 97¿104, 2015, doi: 10.1016/j.snb.2014.10.036. [7] E. E. Bedford, S. Boujday, C. M. Pradier, and F. X. Gu, ¿Spiky gold shells on magnetic particles for DNA biosensors,¿ Talanta, vol. 182, no. November 2017, pp. 259¿266, 2018, doi: 10.1016/j.talanta.2018.01.094. [8] V. C. Ferreira, A. I. Melato, A. F. Silva, and L. M. Abrantes, ¿Conducting polymers with attached platinum nanoparticles towards the development of DNA biosensors,¿ Electrochemistry Communications, vol. 13, no. 9, pp. 993¿996, Sep. 2011, doi: 10.1016/j.elecom.2011.06.021. [9] M. Chen, H. Xiong, X. Zhang, H. Gu, and S. Wang, ¿Electrochemical biosensors for the monitoring of DNA damage induced by ferric ions mediated oxidation of dopamine,¿ Electrochemistry Communications, vol. 28, pp. 91¿94, Mar. 2013, doi: 10.1016/j.elecom.2012.12.004. [10] E. O. Blair and D. K. Corrigan, ¿A review of microfabricated electrochemical biosensors for DNA detection,¿ Biosensors and Bioelectronics, vol. 134, no. February, pp. 57¿67, 2019, doi: 10.1016/j.bios.2019.03.055. [11] G. Janusz et al., ¿Laccase Properties, Physiological Functions, and Evolution,¿ International Journal of Molecular Sciences 2020, Vol. 21, Page 966, vol. 21, no. 3, p. 966, Jan. 2020, doi: 10.3390/IJMS21030966. [12] P. S. Chauhan, B. Goradia, and A. Saxena, ¿Bacterial laccase: recent update on production, properties and industrial applications,¿ 3 Biotech 2017 7:5, vol. 7, no. 5, pp. 1¿20, Sep. 2017, doi: 10.1007/S13205-017-0955-7. [13] N. Rangel-Muñoz, A. F. González-Barrios, D. Pradilla, J. F. Osma, and J. C. Cruz, ¿Novel Bionanocompounds: Outer Membrane Protein A and Laccase Co-Immobilized on Magnetite Nanoparticles for Produced Water Treatment,¿ Nanomaterials 2020, Vol. 10, Page 2278, vol. 10, no. 11, p. 2278, Nov. 2020, doi: 10.3390/NANO10112278. [14] P. A. Peñaranda et al., ¿Treatment of Wastewater, Phenols and Dyes Using Novel Magnetic Torus Microreactors and Laccase Immobilized on Magnetite Nanoparticles,¿ Nanomaterials 2022, Vol. 12, Page 1688, vol. 12, no. 10, p. 1688, May 2022, doi: 10.3390/NANO12101688. [15] J. C. Gonzalez, S. C. Medina, A. Rodriguez, J. F. Osma, C. J. Alméciga-Díaz, and O. F. Sánchez, ¿Production of Trametes pubescens Laccase under Submerged and Semi-Solid Culture Conditions on Agro-Industrial Wastes,¿ PLOS ONE, vol. 8, no. 9, p. e73721, Sep. 2013, doi: 10.1371/JOURNAL.PONE.0073721. [16] J. Su, J. Fu, Q. Wang, C. Silva, and A. Cavaco-Paulo, ¿Laccase: a green catalyst for the biosynthesis of poly-phenols,¿ https://doi.org/10.1080/07388551.2017.1354353, vol. 38, no. 2, pp. 294¿307, Feb. 2017, doi: 10.1080/07388551.2017.1354353. [17] Y. Zhang, T. Xue, L. Cheng, J. Wang, R. Shen, and J. Zhang, ¿Smartphone-assisted colorimetric biosensor for on-site detection of Cr3+ ion analysis,¿ Analytica Chimica Acta, vol. 1199, p. 339603, Mar. 2022, doi: 10.1016/J.ACA.2022.339603. [18] E. Koushki, F. Mirzaei Mohammadabadi, J. Baedi, and A. Ghasedi, ¿The effects of glucose and glucose oxidase on the Uv-vis spectrum of gold nanoparticles: A study on optical biosensor for saliva glucose monitoring,¿ Photodiagnosis and Photodynamic Therapy, vol. 30, p. 101771, Jun. 2020, doi: 10.1016/J.PDPDT.2020.101771. [19] K. Rodriguez-Villarreal, A. Alva, D. Ramos-Sono, M. C. Terrones, and A. Roman-Gonzalez, ¿Design and construction of a low-cost device for the evaluation of redox behaviour using lineal voltammetry techniques,¿ International Journal of Advanced Computer Science and Applications, vol. 11, no. 4, pp. 669¿673, 2020, doi: 10.14569/IJACSA.2020.0110486. [20] W. Zhang, Y. Xu, X. Zou, and P. Wang, ¿A real-time-range potentiostat coupled to nano-Au-modified microband electrode array for high-speed stripping determination of human blood lead,¿ Biosensors and Bioelectronics, vol. 97, no. March, pp. 267¿272, 2017, doi: 10.1016/j.bios.2017.06.008. [21] Y. C. Li et al., ¿An Easily Fabricated Low-Cost Potentiostat Coupled with User-Friendly Software for Introducing Students to Electrochemical Reactions and Electroanalytical Techniques,¿ Journal of Chemical Education, vol. 95, no. 9, pp. 1658¿1661, Sep. 2018, doi: 10.1021/acs.jchemed.8b00340. [22] T. Dobbelaere, P. M. Vereecken, and C. Detavernier, ¿A USB-controlled potentiostat/galvanostat for thin-film battery characterization,¿ HardwareX, vol. 2, pp. 34¿49, Oct. 2017, doi: 10.1016/j.ohx.2017.08.001. [23] A. v. Cordova-Huaman, V. R. Jauja-Ccana, and A. la Rosa-Toro, ¿Low-cost smartphone-controlled potentiostat based on Arduino for teaching electrochemistry fundamentals and applications,¿ Heliyon, vol. 7, no. 2, Feb. 2021, doi: 10.1016/j.heliyon.2021.e06259. [24] A. A. Rowe et al., ¿Cheapstat: An open-source, ¿do-it-yourself¿ potentiostat for analytical and educational applications,¿ PLoS ONE, vol. 6, no. 9, Sep. 2011, doi: 10.1371/journal.pone.0023783. [25] P. Irving, R. Cecil, and M. Z. Yates, ¿MYSTAT: A compact potentiostat/galvanostat for general electrochemistry measurements¿, doi: 10.5281/zenodo.4252476. [26] D. Ji et al., ¿Smartphone-based cyclic voltammetry system with graphene modified screen printed electrodes for glucose detection,¿ Biosensors and Bioelectronics, vol. 98, pp. 449¿456, Dec. 2017, doi: 10.1016/j.bios.2017.07.027. [27] J. Massah and K. Asefpour Vakilian, ¿An intelligent portable biosensor for fast and accurate nitrate determination using cyclic voltammetry,¿ Biosystems Engineering, vol. 177, pp. 49¿58, Jan. 2019, doi: 10.1016/j.biosystemseng.2018.09.007. [28] C. Mercer, R. Bennett, P. Conghaile, J. F. Rusling, and D. Leech, ¿Glucose biosensor based on open-source wireless microfluidic potentiostat,¿ Sensors and Actuators, B: Chemical, vol. 290, pp. 616¿624, Jul. 2019, doi: 10.1016/j.snb.2019.02.031. [29] O. J. Biosens, B. Open, A.¿: Bboa-102, C. Segura, A. L. Campana, and J. F. Osma, ¿Biosensors and Bioelectronics Open Access Editorial Biosensors: Applications in Disease Diagnostics,¿ 2017, doi: 10.29011/BBOA-102. [30] E. I. Tzianni, J. Hrbac, D. K. Christodoulou, and M. I. Prodromidis, ¿A portable medical diagnostic device utilizing free-standing responsive polymer film-based biosensors and low-cost transducer for point-of-care applications,¿ Sensors and Actuators, B: Chemical, vol. 304, Feb. 2020, doi: 10.1016/j.snb.2019.127356. [31] Y. Xu, M. Xiong, and H. Yan, ¿A portable optical fiber biosensor for the detection of zearalenone based on the localized surface plasmon resonance,¿ Sensors and Actuators, B: Chemical, vol. 336, Jun. 2021, doi: 10.1016/j.snb.2021.129752. [32] M. Giannetto, V. Bianchi, S. Gentili, S. Fortunati, I. de Munari, and M. Careri, ¿An integrated IoT-Wi-Fi board for remote data acquisition and sharing from innovative immunosensors. Case of study: Diagnosis of celiac disease,¿ Sensors and Actuators B: Chemical, vol. 273, pp. 1395¿1403, Nov. 2018, doi: 10.1016/j.snb.2018.07.056. [33] W. Dang, L. Manjakkal, W. T. Navaraj, L. Lorenzelli, V. Vinciguerra, and R. Dahiya, ¿Stretchable wireless system for sweat pH monitoring,¿ Biosensors and Bioelectronics, vol. 107, pp. 192¿202, Jun. 2018, doi: 10.1016/j.bios.2018.02.025. [34] R. S. Dahiya, ¿Epidermal electronics ¿ flexible electronics for biomedical applications,¿ in Handbook of Bioelectronics: Directly Interfacing Electronics and Biological Systems, Cambridge University Press, 2015, pp. 245¿255. doi: 10.1017/CBO9781139629539.023. [35] A. E. Cetin, Z. A. Kocer, S. N. Topkaya, and Z. A. Yazici, ¿Handheld plasmonic biosensor for virus detection in field-settings,¿ Sensors and Actuators, B: Chemical, vol. 344, Oct. 2021, doi: 10.1016/j.snb.2021.130301. [36] A. F. D. Cruz, N. Norena, A. Kaushik, and S. Bhansali, ¿A low-cost miniaturized potentiostat for point-of-care diagnosis,¿ Biosensors and Bioelectronics, vol. 62, pp. 249¿254, 2014, doi: 10.1016/j.bios.2014.06.053. [37] J. Kim et al., ¿Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics,¿ Biosensors and Bioelectronics, vol. 74, pp. 1061¿1068, Dec. 2015, doi: 10.1016/j.bios.2015.07.039. [38] V. Valente, N. Neshatvar, E. Pilavaki, M. Schormans, and A. Demosthenous, .¿2V Energy-Efficient Wireless CMOS Potentiostat for Amperometric Measurements.¿ [39] Z. L. Lv et al., ¿A simplified electrochemical instrument equipped with automated flow-injection system and network communication technology for remote online monitoring of heavy metal ions,¿ Journal of Electroanalytical Chemistry, vol. 791, pp. 49¿55, Apr. 2017, doi: 10.1016/j.jelechem.2017.03.012. [40] C. Joe, B. H. Lee, S. H. Kim, Y. Ko, and M. B. Gu, ¿Aptamer duo-based portable electrochemical biosensors for early diagnosis of periodontal disease,¿ Biosensors and Bioelectronics, vol. 199, p. 113884, Mar. 2022, doi: 10.1016/J.BIOS.2021.113884. [41] D. Zhang, X. Lang, N. Hui, and J. Wang, ¿Dual-Mode electrochemical biosensors based on Chondroitin sulfate functionalized polypyrrole nanowires for ultrafast and ultratrace detection of acetamiprid pesticide,¿ Microchemical Journal, vol. 179, p. 107530, Aug. 2022, doi: 10.1016/J.MICROC.2022.107530. [42] J. Zuñiga et al., ¿Synthesis of lysozyme-reduced graphene oxide films for biosensor applications,¿ Diamond and Related Materials, vol. 126, p. 109093, Jun. 2022, doi: 10.1016/J.DIAMOND.2022.109093. [43] D. R. Fosnacht and T. J. O¿Keefe, ¿Evaluation of zinc sulphate electrolytes containing certain impurities and additives by cyclic voltammetry,¿ Journal of Applied Electrochemistry, vol. 10, no. 4, pp. 495¿504, 1980, doi: 10.1007/BF00614083. [44] Z. Bi, C. S. Chapman, P. Salaün, and C. M. G. van den Berg, ¿Determination of Lead and Cadmium in Sea- and Freshwater by Anodic Stripping Voltammetry with a Vibrating Bismuth Electrode,¿ Electroanalysis, vol. 22, no. 24, pp. 2897¿2907, 2010, doi: 10.1002/elan.201000429. [45] C. Rojas-Romo, M. E. Aliaga, V. Arancibia, and M. Gomez, ¿Determination of Pb(II) and Cd(II) via anodic stripping voltammetry using an in-situ bismuth film electrode. Increasing the sensitivity of the method by the presence of Alizarin Red S,¿ Microchemical Journal, vol. 159, p. 105373, Dec. 2020, doi: 10.1016/J.MICROC.2020.105373. [46] Y. Zhang and R. G. Compton, ¿Anodic stripping voltammetry using underpotential deposition allows sub 10 ppb measurement of Total As and As(III) in water,¿ Talanta, vol. 247, p. 123578, Sep. 2022, doi: 10.1016/J.TALANTA.2022.123578. [47] V. Jovanovski, N. I. Hrastnik, and S. B. Ho¿evar, ¿Copper film electrode for anodic stripping voltammetric determination of trace mercury and lead,¿ 2015. doi: 10.1016/j.elecom.2015.04.018. [48] L. Laffont et al., ¿Mercury(II) trace detection by a gold nanoparticle-modified glassy carbon electrode using square-wave anodic stripping voltammetry including a chloride desorption step,¿ Talanta, vol. 141, pp. 26¿32, 2015, doi: 10.1016/j.talanta.2015.03.036. [49] B. K. Singh, A. Shaikh, R. O. Dusane, and S. Parida, ¿Copper oxide nanosheets and nanowires grown by one-step linear sweep voltammetry for supercapacitor application,¿ Journal of Energy Storage, vol. 31, p. 101631, Oct. 2020, doi: 10.1016/J.EST.2020.101631. [50] M. el Henawee, H. Saleh, A. K. Attia, E. M. Hussien, and A. R. Derar, ¿Carbon nanotubes bulk modified printed electrochemical sensor for green determination of vortioxetine hydrobromide by linear sweep voltammetry,¿ Measurement, vol. 177, p. 109239, Jun. 2021, doi: 10.1016/J.MEASUREMENT.2021.109239. [51] S. Phal, H. Nguy¿n, A. Berisha, and S. Tesfalidet, ¿In situ Bi/carboxyphenyl-modified glassy carbon electrode as a sensor platform for detection of Cd2+ and Pb2+ using square wave anodic stripping voltammetry.,¿ Sens Biosensing Res, vol. 34, p. 100455, Dec. 2021, doi: 10.1016/J.SBSR.2021.100455. [52] W. J. Yi, Y. Li, G. Ran, H. Q. Luo, and N. B. Li, ¿Determination of cadmium(II) by square wave anodic stripping voltammetry using bismuth-antimony film electrode,¿ Sensors and Actuators, B: Chemical, vol. 166¿167, pp. 544¿548, 2012, doi: 10.1016/j.snb.2012.03.005. [53] L. Fan, G. Zhao, H. Shi, M. Liu, and Z. Li, ¿A highly selective electrochemical impedance spectroscopy-based aptasensor for sensitive detection of acetamiprid,¿ Biosensors and Bioelectronics, vol. 43, no. 1, pp. 12¿18, 2013, doi: 10.1016/j.bios.2012.11.033. [54] R.-G. Cao, B. Zhu, J. Li, and D. Xu, ¿Oligonucleotides-based biosensors with high sensitivity and selectivity for mercury using electrochemical impedance spectroscopy,¿ Electrochemistry Communications, vol. 11, no. 9, pp. 1815¿1818, Sep. 2009, doi: 10.1016/j.elecom.2009.07.029. [55] I. Ciani et al., ¿Development of immunosensors for direct detection of three wound infection biomarkers at point of care using electrochemical impedance spectroscopy,¿ Biosensors and Bioelectronics, vol. 31, no. 1, pp. 413¿418, 2012, doi: 10.1016/j.bios.2011.11.004. [56] R. Pruna et al., ¿A low-cost and miniaturized potentiostat for sensing of biomolecular species such as TNF-¿ by electrochemical impedance spectroscopy,¿ Biosensors and Bioelectronics, vol. 100, pp. 533¿540, Feb. 2018, doi: 10.1016/j.bios.2017.09.049. [57] Y. F. Hu, P. Zuo, and B. C. Ye, ¿Label-free electrochemical impedance spectroscopy biosensor for direct detection of cancer cells based on the interaction between carbohydrate and lectin,¿ Biosensors & Bioelectronics, vol. 43, pp. 79¿83, 2013, doi: 10.1016/j.bios.2012.11.028. [58] W. Li et al., ¿Immobilization of bovine hemoglobin on Au nanoparticles/MoS2 nanosheets ¿ Chitosan modified screen-printed electrode as chlorpyrifos biosensor,¿ Enzyme and Microbial Technology, vol. 154, p. 109959, Mar. 2022, doi: 10.1016/J.ENZMICTEC.2021.109959. [59] J. Mohanraj, D. Durgalakshmi, R. A. Rakkesh, S. Balakumar, S. Rajendran, and H. Karimi-Maleh, ¿Facile synthesis of paper based graphene electrodes for point of care devices: A double stranded DNA (dsDNA) biosensor,¿ Journal of Colloid and Interface Science, vol. 566, pp. 463¿472, Apr. 2020, doi: 10.1016/J.JCIS.2020.01.089. [60] B. Demirbakan and M. Kemal Sezgintürk, ¿An impedimetric biosensor system based on disposable graphite paper electrodes: Detection of ST2 as a potential biomarker for cardiovascular disease in human serum,¿ Analytica Chimica Acta, vol. 1144, pp. 43¿52, Feb. 2021, doi: 10.1016/J.ACA.2020.12.001. [61] J. Kudr et al., ¿Inkjet-printed electrochemically reduced graphene oxide microelectrode as a platform for HT-2 mycotoxin immunoenzymatic biosensing,¿ Biosensors and Bioelectronics, vol. 156, p. 112109, May 2020, doi: 10.1016/J.BIOS.2020.112109. [62] S. Grimnes and Ø. G. Martinsen, ¿Electrodes,¿ Bioimpedance and Bioelectricity Basics, pp. 179¿254, Jan. 2015, doi: 10.1016/B978-0-12-411470-8.00007-6. [63] M. K. Mari¿, A. Vla¿i¿, A. M. Ivankovi¿, J. Bleiziffer, M. Srbi¿, and D. Skokandi¿, ¿Assessment of reinforcement corrosion and concrete damage on bridges using non-destructive testing,¿ Gradjevinar, vol. 71, no. 10, pp. 843¿862, 2019, doi: 10.14256/JCE.2724.2019. [64] A. Poursaee, Corrosion measurement and evaluation techniques of steel in concrete structures, no. 2009. Elsevier Ltd, 2016. doi: 10.1016/B978-1-78242-381-2.00009-2. [65] K. Kawaai, T. Nishida, A. Saito, I. Ujike, and S. Fujioka, ¿Corrosion resistance of steel bars in mortar mixtures mixed with organic matter, microbial or other,¿ Cement and Concrete Research, vol. 124, no. July, p. 105822, 2019, doi: 10.1016/j.cemconres.2019.105822. [66] C. L. Alexander and M. E. Orazem, ¿Indirect Impedance for Corrosion Detection of External Post-tensioned Tendons: 2. Multiple Steel Strands,¿ Corrosion Science, vol. 164, no. November 2019, p. 108330, 2020, doi: 10.1016/j.corsci.2019.108330. [67] M. Keddam, X. R. Nóvoa, and V. Vivier, ¿The concept of floating electrode for contact-less electrochemical measurements: Application to reinforcing steel-bar corrosion in concrete,¿ Corrosion Science, vol. 51, no. 8, pp. 1795¿1801, 2009, doi: 10.1016/j.corsci.2009.05.006. [68] C. L. Alexander and M. E. Orazem, ¿Indirect electrochemical impedance spectroscopy for corrosion detection in external post-tensioned tendons: 1. Proof of concept,¿ Corrosion Science, vol. 164, p. 108331, 2020, doi: 10.1016/j.corsci.2019.108331. [69] A. Alvarez-Pampliega et al., ¿Corrosion study on Al-rich metal-coated steel by odd random phase multisine electrochemical impedance spectroscopy,¿ Electrochimica Acta, vol. 124, pp. 165¿175, 2014, doi: 10.1016/j.electacta.2013.09.159. [70] R. Raj et al., ¿Calcium carbonate particles loaded with triethanolamine and polyethylenimine for enhanced corrosion protection of epoxy coated steel,¿ Corrosion Science, vol. 167, no. January, p. 108548, 2020, doi: 10.1016/j.corsci.2020.108548. [71] C. C. Segura and J. F. Osma, ¿Miniaturization of Cyclic Voltammetry Electronic Systems for Remote Biosensing,¿ International Journal of Biosensors & Bioelectronics, vol. 3, no. 3, pp. 297¿299, 2017, doi: 10.15406/ijbsbe.2017.03.00068. [72] M. D. Steinberg, P. Kassal, I. Kerekovi¿, and I. M. Steinberg, ¿A wireless potentiostat for mobile chemical sensing and biosensing,¿ Talanta, vol. 143, pp. 178¿183, 2015, doi: 10.1016/j.talanta.2015.05.028. [73] T. Dobbelaere, ¿A USB-controlled potentiostat/galvanostat for thin-film battery characterization,¿ HardwareX, vol. 2, pp. 1¿12, 2017, doi: 10.1016/j.ohx.2017.08.001. [74] S. Bukkawar, N. Sarwade, and M. Panse, ¿Polyaniline assisted USB based sensor for determination of benzene biomarker,¿ Sens Biosensing Res, vol. 22, no. January, p. 100260, 2019, doi: 10.1016/j.sbsr.2019.100260. [75] ¿Autolab PGSTAT101.¿ https://www.metrohm.com/en/products/a/ut10/aut101_s.html (accessed Jun. 13, 2022). [76] ¿PalmSens4 - PalmSens.¿ https://www.palmsens.com/product/palmsens4/ (accessed Jun. 13, 2022). [77] K. A. al Mamun, S. K. Islam, D. K. Hensley, and N. McFarlane, ¿A Glucose Biosensor Using CMOS Potentiostat and Vertically Aligned Carbon Nanofibers,¿ IEEE Transactions on Biomedical Circuits and Systems, vol. 10, no. 4, pp. 807¿816, 2016, doi: 10.1109/TBCAS.2016.2557787. [78] Y. Ye, J. Ji, Z. Sun, P. Shen, and X. Sun, ¿Recent advances in electrochemical biosensors for antioxidant analysis in foodstuff,¿ TrAC - Trends in Analytical Chemistry, vol. 122, p. 115718, 2020, doi: 10.1016/j.trac.2019.115718. [79] L. I. Ramírez-Cavazos et al., ¿Purification and characterization of two thermostable laccases from Pycnoporus sanguineus and potential role in degradation of endocrine disrupting chemicals,¿ Journal of Molecular Catalysis B: Enzymatic, vol. 108, pp. 32¿42, 2014, doi: 10.1016/j.molcatb.2014.06.006. [80] S. Kurbanoglu, S. A. Ozkan, and A. Merkoçi, ¿Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications,¿ Biosensors and Bioelectronics, vol. 89, pp. 886¿898, Mar. 2017, doi: 10.1016/J.BIOS.2016.09.102. [81] E. Herth, R. Zeggari, J. Y. Rauch, F. Remy-Martin, and W. Boireau, ¿Investigation of amorphous SiOx layer on gold surface for Surface Plasmon Resonance measurements,¿ Microelectronic Engineering, vol. 163, pp. 43¿48, Sep. 2016, doi: 10.1016/j.mee.2016.04.014. [82] M. K. F. Lo et al., ¿ Nanoscale Chemical-Mechanical Characterization of Nanoelectronic Low- k Dielectric/Cu Interconnects ,¿ ECS Journal of Solid State Science and Technology, vol. 5, no. 4, pp. P3018¿P3024, 2016, doi: 10.1149/2.0041604jss. [83] P. Hu, X. Zhou, and Q. Wu, ¿A new nanosensor composed of laminated samarium borate and immobilized laccase for phenol determination,¿ 2014. [Online]. Available: http://www.nanoscalereslett.com/content/9/1/76 [84] A. Samui and S. K. Sahu, ¿One-pot synthesis of microporous nanoscale metal organic frameworks conjugated with laccase as a promising biocatalyst,¿ New Journal of Chemistry, vol. 42, no. 6, pp. 4192¿4200, 2018, doi: 10.1039/c7nj03619a. [85] O. C. Cheen et al., ¿Aptamer-based impedimetric determination of the human blood clotting factor IX in serum using an interdigitated electrode modified with a ZnO nanolayer,¿ Microchimica Acta, vol. 184, no. 1, pp. 117¿125, Jan. 2017, doi: 10.1007/s00604-016-2001-6. [86] A. Yudhana, D. Sulistyo, and I. Mufandi, ¿GIS-based and Naïve Bayes for nitrogen soil mapping in Lendah, Indonesia,¿ Sens Biosensing Res, vol. 33, p. 100435, Aug. 2021, doi: 10.1016/J.SBSR.2021.100435. [87] H. Singh, G. Singh, D. K. Mahajan, N. Kaur, and N. Singh, ¿A low-cost device for rapid ¿color to concentration¿ quantification of cyanide in real samples using paper-based sensing chip,¿ Sensors and Actuators B: Chemical, vol. 322, p. 128622, Nov. 2020, doi: 10.1016/J.SNB.2020.128622. [88] L. Chen, F. J. Ye, Y. Ruan, M. Cuo, S. S. Luo, and H. Y. Cui, ¿Trichromatic-color-sensing metasurface with reprogrammable electromagnetic functions,¿ Opt Mater (Amst), vol. 123, p. 111892, Jan. 2022, doi: 10.1016/J.OPTMAT.2021.111892. [89] Y. Zhang, T. M. Tseng, and U. Schlichtmann, ¿ColoriSens: An open-source and low-cost portable color sensor board for microfluidic integration with wireless communication and fluorescence detection,¿ HardwareX, vol. 11, p. e00312, Apr. 2022, doi: 10.1016/J.OHX.2022.E00312. [90] J. S. Botero-Valencia, J. Valencia-Aguirre, and D. Durmus, ¿A low-cost IoT multi-spectral acquisition device,¿ HardwareX, vol. 9, p. e00173, Apr. 2021, doi: 10.1016/J.OHX.2021.E00173. [91] P. Prasanth, G. Viswan, and K. Bennaceur, ¿Development of a low-cost portable spectrophotometer for milk quality analysis,¿ Materials Today: Proceedings, vol. 46, pp. 4863¿4868, Jan. 2021, doi: 10.1016/J.MATPR.2020.10.327. [92] J. S. Botero-Valencia, J. Valencia-Aguirre, D. Durmus, and W. Davis, ¿Multi-channel low-cost light spectrum measurement using a multilayer perceptron,¿ Energy and Buildings, vol. 199, pp. 579¿587, Sep. 2019, doi: 10.1016/J.ENBUILD.2019.07.026. [93] J. S. Botero-Valencia and M. Mejia-Herrera, ¿Modular system for UV¿vis-NIR radiation measurement with wireless communication,¿ HardwareX, vol. 10, p. e00236, Oct. 2021, doi: 10.1016/J.OHX.2021.E00236. [94] M. A. Yokus, T. Songkakul, V. A. Pozdin, A. Bozkurt, and M. A. Daniele, ¿Wearable multiplexed biosensor system toward continuous monitoring of metabolites,¿ Biosensors and Bioelectronics, vol. 153, Apr. 2020, doi: 10.1016/j.bios.2020.112038. [95] A. Pal, D. Goswami, H. E. Cuellar, B. Castro, S. Kuang, and R. v. Martinez, ¿Early detection and monitoring of chronic wounds using low-cost, omniphobic paper-based smart bandages,¿ Biosensors and Bioelectronics, vol. 117, pp. 696¿705, Oct. 2018, doi: 10.1016/j.bios.2018.06.060. [96] T. R. Molderez, A. Prévoteau, F. Ceyssens, M. Verhelst, and K. Rabaey, ¿A chip-based 128-channel potentiostat for high-throughput studies of bioelectrochemical systems: Optimal electrode potentials for anodic biofilms,¿ Biosensors and Bioelectronics, vol. 174, Feb. 2021, doi: 10.1016/j.bios.2020.112813. [97] M. M. Calabretta, R. Álvarez-Diduk, E. Michelini, A. Roda, and A. Merkoçi, ¿Nano-lantern on paper for smartphone-based ATP detection,¿ Biosensors and Bioelectronics, vol. 150, Feb. 2020, doi: 10.1016/j.bios.2019.111902.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleA low-cost multi-technique portable electrochemical device for remote Biosensors
dc.typeTrabajo de grado - Doctorado


Este ítem pertenece a la siguiente institución