dc.contributorArbeláez Escalante, Pablo Andrés
dc.contributorMuñoz Camargo, Carolina
dc.contributorPérez Santamaria, Juan Camilo
dc.contributorCINFONIA
dc.creatorValderrama Barrera, Natalia Fernanda
dc.date.accessioned2022-08-11T13:27:28Z
dc.date.available2022-08-11T13:27:28Z
dc.date.created2022-08-11T13:27:28Z
dc.date.issued2022-06-06
dc.identifierhttp://hdl.handle.net/1992/59821
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.description.abstractDrug Discovery is an active research area that demands great investments and generates low returns due to its inherent complexity and great costs. To identify potential therapeutic candidates more effectively, we propose Protein-Ligand with Adversarial augmentations Network (PLA-Net), a Deep Learning-based approach to predict Target-Ligand Interactions (TLI). PLA-Net consists of a two-module Deep Graph Convolutional Network that considers ligands' and targets' most relevant chemical information, successfully combining them to find their binding capability. Moreover, we generate adversarial data augmentations that preserve relevant biological backgrounds and improve the interpretability of our model, highlighting the relevant substructures of the ligands reported to interact with the protein targets. Our experiments demonstrate that the joint Ligand-Target information and the adversarial augmentations significantly increase the interaction prediction performance. PLA-Net achieves 86.52 % in mean Average Precision (mAP) for 102 target proteins with perfect performance for 30 of them, in a curated version of Actives as Decoys (AD) dataset. Lastly, we accurately predict pharmacologically-relevant molecules when screening the ligands of ChEMBL and Drug Repurposing Hub datasets with the perfect-scoring targets.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ingeniería Biomédica
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Biomédica
dc.relation[1] Wenqiang Cui, Adnane Aouidate, Shouguo Wang, QiuliyangYu, Yanhua Li, and Shuguang Yuan. Discovering anti-cancer drugs via computational methods. Frontiers in pharmacology, 11, 2020.
dc.relation[2] Antonio Lavecchia and Carmen Cerchia. In silico methods to address polypharmacology: current status, applications and future perspectives. Drug Discovery Today, 21(2):288-298, 2016.
dc.relation[3] David Thomas, Daniel Chancellor, Amanda Micklus, Sara LaFever, Michael Hay, Shomesh Chaudhuri, Robert Bowden, and Andrew W. Lo. Clinical Development Success Rates and Contributing Factors 2011-2020. 2021.
dc.relation[4] The Food and Drug Administration. FDA Executive Summary. 2017.
dc.relation[5] David C Swinney and Jason Anthony. How were new medicines discovered' Nature reviews Drug discovery, 10(7):507-519, 2011.
dc.relation[6] Kyriaki Savva, Margarita Zachariou, Anastasis Oulas, George Minadakis, Kleitos Sokratous, Nikolas Dietis, and George M. Spyrou. Computational drug repurposing for neurodegenerative diseases. In In Silico Drug Design, pages 85-118. Elsevier, 2019.
dc.relation7] Francesca Stanzione, Ilenia Giangreco, and Jason C Cole. Use of molecular docking computational tools in drug discovery. Progress in Medicinal Chemistry, 60:273-343, 2021.
dc.relation[8] Sumudu P Leelananda and Steffen Lindert. Computational methods in drug discovery. Beilstein journal of organic chemistry, 12(1):2694-2718, 2016.
dc.relation[9] Sharangdhar S Phatak, Clifford C Stephan, and Claudio N Cavasotto. High-throughput and in silico screenings in drug discovery. Expert Opinion on Drug Discovery, 4(9):947-959, 2009.
dc.relation[10] Nicolaas M Angenent-Mari, Alexander S Garruss, Luis R Soenksen, George Church, and James J Collins. A deep learning approach to programmable rna switches. Nature communications, 11(1):1-12, 2020.
dc.relation[11] Jacqueline A Valeri, Katherine M Collins, Pradeep Ramesh, Miguel A Alcantar, Bianca A Lepe, Timothy K Lu, and Diogo M Camacho. Sequence-to-function deep learning frameworks for engineered riboregulators. Nature communications, 11(1):1-14, 2020.
dc.relation[12] Andrew W Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim Green, Chongli Qin, Augustin Zdek, Alexander WR Nelson, Alex Bridgland, et al. Improved protein structure prediction using potentials from deep learning. Nature, 577(7792):706-710, 2020.
dc.relation[13] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Zídek, Anna Potapenko, et al. Highly accurate protein structure prediction with alphafold. Nature, 596(7873):583-589, 2021.
dc.relation[14] Nicolas Renaud, Cunliang Geng, Sonja Georgievska, Francesco Ambrosetti, Lars Ridder, Dario F Marzella, Manon F Reau, Alexandre MJJ Bonvin, and Li C Xue. Deeprank: A deep learning framework for data mining 3d protein-protein interfaces. Nature Communications, 12(1):1-8, 2021.
dc.relation[15] Jonathan M Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, Nina M Donghia, Craig R MacNair, Shawn French, Lindsey A Carfrae, Zohar Bloom-Ackerman, et al. A deep learning approach to antibiotic discovery. Cell, 180(4):688-702, 2020.
dc.relation[16] Benjamin Sanchez-Lengeling and Alán Aspuru-Guzik. Inverse molecular design using machine learning: Generative models for matter engineering. 361:360-365, 2018.
dc.relation[17] Teva, Novartis, Mylan, Johnson Johnson, Pfizer, Bausch Health, GSK, ChemRar Group, Glenmark, Fujifilm, et al. Global and China Drug Repositioning Market Size, Status and Forecast 2020-2027. QYResearch Group, 0AD.
dc.relation[18] Ahmet Sureyya Rifaioglu, Esra Nalbat, Volkan Atalay, Maria Jesus Martin, Rengul Cetin-Atalay, and Tunca Dogan. Deepscreen: high performance drug-target interaction prediction with convolutional neural networks using 2-d structural compound representations. Chemical science, 11(9):2531-2557, 2020.
dc.relation[19] Paola Ruiz Puentes, Natalia Valderrama, Cristina González, Laura Daza, Carolina Muñoz-Camargo, Juan C Cruz, and Pablo Arbeláez. Pharmanet: Pharmaceutical discovery with deep recurrent neural networks. bioRxiv, 2020.
dc.relation[20] Jack Scantlebury, Nathan Brown, Frank Von Delft, and Charlotte M Deane. Data set augmentation allows deep learning-based virtual screening to better generalize to unseen target classes and highlight important binding interactions. Journal of Chemical Information and Modeling, 60(8):3722-3730, 2020.
dc.relation[21] Zhirui Liao, Ronghui You, Xiaodi Huang, Xiaojun Yao, Tao Huang, and Shanfeng Zhu. Deepdock: Enhancing ligand-protein interaction prediction by a combination of ligand and structure information. In 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pages 311-317. IEEE, 2019.
dc.relation[22] Wen Torng and Russ B Altman. Graph convolutional neural networks for predicting drug-target interactions. Journal of chemical information and modeling, 59(10):4131-4149, 2019.
dc.relation[23] Jaechang Lim, Seongok Ryu, Kyubyong Park, Yo Joong Choe, Jiyeon Ham, and Woo Youn Kim. Predicting drug-target interaction using a novel graph neural network with 3d structure-embedded graph represen- tation. Journal of chemical information and modeling, 59(9):3981-3988, 2019.
dc.relation[24] Shuangjia Zheng, Yongjian Li, Sheng Chen, Jun Xu, and Yuedong Yang. Predicting drug-protein interaction using quasi-visual question answering system. Nature Machine Intelligence, 2(2):134-140, 2020.
dc.relation[25] Guohao Li, Matthias Müller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep as cnns? In The IEEE International Conference on Computer Vision (ICCV), 2019.
dc.relation[26] Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. Deepergcn: All you need to train deeper gcns. arXiv, 2020.
dc.relation[27] Jorge Aguilera-Iparraguirre Rafael Gómez-Bombarelli Timothy Hirzel Alán Aspuru-Guzik Ryan P. Adams David Duvenaud, Dougal Maclaurin. Convolutional networks on graphs for learning molecular fingerprints. NIPS-15: Proceedings of the 28th International Conference on Neural Information Processing Systems, 2:2224-2232, 2015.
dc.relation[28] Evan N. Feinberg, Debnil Sur, Zhenqin Wu, Brooke E. Husic, Huanghao Mai, Yang Li, Saisai Sun, Jianyi Yang, Bharath Ramsundar, and Vijay S. Pande. PotentialNet for molecular property prediction. ACS Central Science, 4(11):1520-1530, November 2018.
dc.relation[29] Evan N. Feinberg, Elizabeth Joshi, Vijay S. Pande, and Alan C. Cheng. Improvement in ADMET prediction with multitask deep featurization. Journal of Medicinal Chemistry, 63(16):8835-8848, April 2020.
dc.relation[30] Jonathon Shlens, Christian Szegedy, and Ian J. Goodfellow. Explaining and harnessing adversarial examples. International Conference on Learning Representations, 2015.
dc.relation[31] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Brandon Tran, and Aleksander Madry. Learning perceptually-aligned representations via adversarial robustness. In ArXiv preprint arXiv:1906.00945, 2019.
dc.relation[32] Ludwig Schmidt Dimitris Tsipras Adrian Vladu Aleksander Madry, Aleksandar Makelov. Towards deep learning models resistant to adversarial attacks. International Conference on Learning Representations, 2017.
dc.relation[33] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial attack on graph structured data. In International conference on machine learning, pages 1115-1124. PMLR, 2018.
dc.relation[34] Chembl. The Brussels Times.
dc.relation[35] Steven M Corsello, Joshua A Bittker, Zihan Liu, Joshua Gould, Patrick McCarren, Jodi E Hirschman, Stephen E Johnston, Anita Vrcic, Bang Wong, Mariya Khan, et al. The drug repurposing hub: a next-generation drug library and information resource. Nature medicine, 23(4):405-408, 2017.
dc.relation[36] Paola Ruiz Puentes, Laura Rueda-Gensini, Natalia Valderrama, Isabela Hernández, Cristina González, Laura Daza, Carolina Muñoz-Camargo, Juan C Cruz, and Pablo Arbeláez. Predicting target-ligand interactions with graph convolutional networks for interpretable pharmaceutical discovery. Scientific reports, 12(1):1-17, 2022.
dc.relation[37] John. J. Irwin Michael M. Mysinger, Michael Carchia, and Brian K. Shoichet. Directory of useful decoys, enhanced (dud-e): Better ligands and decoys for better benchmarking. Journal of Medicinal Chemistry, 55:6582-6594, 2012.
dc.relation[38] Ann E Cleves and Ajay N Jain. Structure-and ligand-based virtual screening on dud-e: Performance dependence on approximations to the binding pocket. Journal of chemical information and modeling, 60(9):4296-4310, 2020.
dc.relation[39] Ludovic Chaput, Juan Martinez-Sanz, Nicolas Saettel, and Liliane Mouawad. Benchmark of four popular virtual screening programs: construction of the active/decoy dataset remains a major determinant of measured performance. Journal of cheminformatics, 8(1):1-17, 2016.
dc.relation[40] Lieyang Chen, Anthony Cruz, Steven Ramsey, Callum J Dickson, Jose S Duca, Viktor Hornak, David R Koes, and Tom Kurtzman. Hidden bias in the dud-e dataset leads to misleading performance of deep learning in structure-based virtual screening. PloS one, 14(8), 2019.
dc.relation[41] F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions. CoRR, abs/1511.07122, 2016.
dc.relation[42] Guy W Bemis and Mark A Murcko. The properties of known drugs. 1. molecular frameworks. Journal of medicinal chemistry, 39(15):2887-2893, 1996.
dc.relation[43] Masataka Kuroda. A novel descriptor based on atom-pair properties. Journal of Cheminformatics, 9(1), January 2017.
dc.relation[44] Robert P. Sheridan, Prabha Karnachi, Matthew Tudor, Yuting Xu, Andy Liaw, Falgun Shah, Alan C. Cheng, Elizabeth Joshi, Meir Glick, and Juan Alvarez. Experimental error, kurtosis, activity cliffs, and methodology: What limits the predictivity of quantitative structure-activity relationship models? Journal of Chemical Information and Modeling, 60(4):1969-1982, March 2020.
dc.relation[45] Guillaume Lebon Byron Carpenter. Human adenosine a2a receptor: Molecular mechanism of ligand binding and activation. Frontiers in Pharmacology, 8, 2017.
dc.relation[46] Rosaria Volpini, Sauro Vittori, Emido Camaioni, Gloria Cristalli, Alessandra Eleuteri, and Giulio Lupidi. Adenosine deaminase inhibitors: synthesis and structure-activity relationships of 2-hydroxy-3-nonyl derivatives of azoles. Journal of Medicinal Chemistry, 37, 1994.
dc.relation[47] Stephen J. Benkovic Kazunari Taira. Evaluation of the importance of hydrophobic interactions in drug binding to dihydrofolate reductase. Journal of Medicinal Chemistry, 31, 1988.
dc.relation[48] William A. Hallett, Marvin F. Reich, M. Brawner Floyd, Bernard D. Johnson, Ronald S. Michalak, Ramaswamy Nilakantan, Carolyn Discafani ,Jonathan Golas, Sridhar K. Rabindran, Ru Shen, Xiaoqing Shi, Yu-Fen Wang, Janis Upeslacis, Allan Wissner, Hwei-Ru Tsou, and Elsebe G. Overbeek-Klumpers. Optimization of 6,7-disubstituted-4- (arylamino)quinoline-3-carbonitriles as orally active, irreversible inhibitors of human epidermal growth factor receptor-2 kinase activity. Journal of Medicinal Chemistry, 48, 2005.
dc.relation[49] Friedrich C. Luft. 11-hydroxysteroid dehydrogenase-2 and salt-sensitive hypertension. Circulation, 133, 2016.
dc.relation[50] Mark A Ashwell, William J Moore, William R Solvibile, Eugene Trybulski, Christopher C Chadwick, Susan Chippari, Thomas Kenney, Amy Eckert, Lisa Borges-Marcucci, James C Keith, Zhang Xu, Lydia Mosyak, Douglas C Harnish, Robert J Steffan, and Edward Matelan. Synthesis and activity of substituted 4-(indazol-3-yl)phenols as pathway-selective estrogen receptor ligands useful in the treatment of rheumatoid arthritis. Journal of Medicinal Chemistry, 47, 2004.
dc.relation[51] Behnam Neyshabur, Srinadh Bhojanapalli, David Mcallester, and Nati Srebro. Exploring generalization in deep learning. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.
dc.relation[52] K Ohno, Kenichi Mori, M Orita, and M Takeuchi. Computational in-sights into binding of bisphosphates to farnesyl pyrophosphate synthase. Current medicinal chemistry, 18(2):220-233, 2011.
dc.relation[53] Heimo Wolinski, Gerald Rechberger, Sepp D. Kohlwein, Oksana Tehlivets, Nermina Malanovic, and Ingo Streith. S-adenosyl-l-homocysteine hydrolase, key enzyme of methylation metabolism, regulates phosphatidylcholine synthesis and triacylglycerol homeostasis in yeast: Implications for homocysteine as a risk factor of atherosclerosis. Journal of Biological Chemistry, 283, 2008.
dc.relation[54] M. Payá, M. Alves, E. del Olmo, JL . López, A. San Feliciano, R. Lucas, and A. Ubeda. Synthesis and enzyme inhibitory activities of a series of lipidic diamine and aminoalcohol derivatives on cytosolic and secretory phospholipases a2. Bioorganic and Medicinal Chemistry Letters, 10, 2000.
dc.relation[55] Lars Oliver Conzelmann, Harald Winkler, Stefan Hofer, Jochen Steppan, Heinfried Schmidt, Hubert Bardenheuer, Christian-Friedrich Vahl, Markus A Weigand, Nalan Kayhan, ND Benjamin Funke. The adenosine deaminase inhibitor erythro-9-[2-hydroxyl-3-nonyl]-adenine decreases intestInal permeability and protects against experimental sepsis: a prospective, randomised laboratory investigation. Critical Care, 12, 2008.
dc.relation[56] P. Serafinowski R. McKenna, and S. Neidle. Structure of 5-chloro-3, 5-dideoxyformycin a monohydrate. the effects of protonation on formycin structure and conformation. Acta Crystallographica, 46, 1990.
dc.relation[57] Ralph R. Rossi, and Leon M. Lerner. Inhibition of adenosine deaminase by alcohols derived from adenine nucleosides. Biochemistry, 11, 1972.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titlePredicting Target-Ligand Interactions with Graph Convolutional Networks for Interpretable Pharmaceutical Discovery
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución