dc.contributorCabrera Cabrera, Miguel Ángel
dc.contributorPardo Villaveces, Natalia
dc.contributorEstrada Mejía, Nicolás
dc.contributorGEOSI
dc.creatorCaro Alba, Santiago
dc.date.accessioned2022-07-18T13:59:10Z
dc.date.available2022-07-18T13:59:10Z
dc.date.created2022-07-18T13:59:10Z
dc.date.issued2022-06-17
dc.identifierhttp://hdl.handle.net/1992/58922
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.description.abstractJigsaw-fit blocks are highly fractured boulders of up to tens of meters that stand out in volcanic debris avalanches. Despite the avalanche long runout and agitated motion, jigsawfit blocks are found on the avalanche deposit with no apparent disaggregation or with no relative displacement between fragments. The mechanisms behind the fragments frustrated disaggregation remain unclear and are limited to field observations. The rheology of granular flows down inclined planes suggests that segregation mechanisms prevail and high fragmentation rates are directly associated to internal shearing and intense inter-granular collisions, challenging the theorized kinematics associated to jigsaw-fit blocks. This work aims for better understanding the jigsaw-fit blocks motion inside a dense granular flow, and to study the parameters that controls segregation and disaggregation processes of jigsaw-fit blocks. With this in mind, an experimental model was designed to test analogue jigsaw-fit blocks called intruders. The chosen setup correspond to a planar Couette cell, that can apply a defined shear strain over a granular material at a desired shear rate, and it is instrumented to describe the granular flow kinematics. The intruders were laser cut from thin plates of two different materials, in solid disk of different diameters, and fractured disk with special fracture patterns. The main discovery is that disaggregation takes place regardless of the intruder fragmentation pattern. However, disaggregation start is conditioned by the fragment density and complexity of cracks configuration of the analogue jigsaw-fit blocks. Besides, in the competition between segregation and disaggregation process, it was clear that the disaggregation process inhibits segregation process in fractured intruders. This results led to a simplified level of disaggregation model, that may be applicable to understand jigsaw-fit blocks found in the field. Solid intruders results show that segregation occurs for all solid intruders that exhibits a size difference with the surrounding granular material. Segregation direction depends on the size ratio, and how fast this process develops depends on the shear rate. We predict that this work sets a starting point for reviewing the interpretation of jigsawfit blocks in avalanche deposits, allowing the inference of kinematic features from the fragments configuration and its level of disaggregation.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ingeniería Civil
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Civil y Ambiental
dc.relationSiebert L. Large volcanic debris avalanches: characteristics of source areas, deposits, and associated eruptions. Journal of volcanology and geothermal research. 1984;22(3- 4):163-97.
dc.relationSiebert L, Roverato M. A Historical Perspective on Lateral Collapse and Volcanic Debris Avalanches. In: Volcanic Debris Avalanches. Springer; 2021. p. 11-50.
dc.relationAuker MR, Sparks RSJ, Siebert L, Crosweller HS, Ewert J. A statistical analysis of the global historical volcanic fatalities record. Journal of Applied Volcanology. 2013;2(1):1-24.
dc.relationTakarada S, Ui T, Yamamoto Y. Depositional features and transportation mechanism of valley-filling Iwasegawa and Kaida debris avalanches, Japan. Bulletin of Volcanology. 1999;60(7):508-22.
dc.relationBernard B, Takarada S, Andrade SD, Dufresne A. Terminology and strategy to describe large volcanic landslides and debris avalanches. In: Volcanic Debris Avalanches. Springer; 2021. p. 51-73.
dc.relationPaguican EM, Roverato M, Yoshida H. Volcanic Debris Avalanche Transport and Emplacement Mechanisms. In: Volcanic Debris Avalanches. Springer; 2021. p. 143-73.
dc.relationAndrade SD, de Vries BvW, Robin C. Imbabura volcano (Ecuador): The influence of dipping-substrata on the structural development of composite volcanoes during strike-slip faulting. Journal of Volcanology and Geothermal Research. 2019;385:68-80.
dc.relationGlicken H. Rockslide-debris avalanche of May 18, 1980, Mount St. Helens volcano, Washington. University of California, Santa Barbara.; 1986.
dc.relationGlicken H. Sedimentary architecture of large volcanic-debris avalanches. Society for Sedimentary Geology (SEPM). 1991.
dc.relationRoverato M, Cronin S, Procter J, Capra L. Textural features as indicators of debris avalanche transport and emplacement, Taranaki volcano. Bulletin. 2015;127(1-2):3-18.
dc.relationKokelaar B, Graham R, Gray J, Vallance JW. Fine-grained linings of leveed channels facilitate runout of granular flows. Earth and Planetary Science Letters. 2014;385:172- 80.
dc.relationPerinotto H, Schneider JL, Bachèlery P, Le Bourdonnec FX, Famin V, Michon L. The extreme mobility of debris avalanches: A new model of transport mechanism. Journal of Geophysical Research: Solid Earth. 2015;120(12):8110-9.
dc.relationGlicken H. Rockslide-debris avalanche of may 18, 1980, Mount St. Helens volcano, Washington. US Geological Survey. 1996:1-5.
dc.relationKomorowski J, Glicken H, Sheridan M. Secondary electron imagery of microcracks and hackly fracture surfaces in sand-size clasts from the 1980 Mount St. Helens debris-avalanche deposit: Implications for. Geology. 1991;19:261-4. Available from: https://pubs.geoscienceworld.org/geology/article-lookup/19/3/261.
dc.relationDufresne A, Bösmeier A, Prager C. Sedimentology of rock avalanche deposits ¿ Case study and review. Earth-Science Reviews. 2016;163:234¿259.
dc.relationCalvari S, Tanner LH, Groppelli G. Debris-avalanche deposits of the Milo Lahar sequence and the opening of the Valle del Bove on Etna volcano (Italy). Journal of Volcanology and Geothermal Research. 1998;87(1-4):193-209.
dc.relationShreve RL. The blackhawk landslide. vol. 108. Geological Society of America; 1968.
dc.relationUi T. Volcanic dry avalanche deposits¿identification and comparison with nonvolcanic debris stream deposits. Journal of Volcanology and Geothermal Research. 1983;18(1- 4):135-50.
dc.relationUi T, Glicken H. Internal structural variations in a debris-avalanche deposit from ancestral Mount Shasta, California, USA. Bulletin of Volcanology. 1986;48(4):189-94.
dc.relationUi T. Debris avalanches. Encyclopedia of Volcanoes. 2000:617-26. Available from: https://cir.nii.ac.jp/crid/1572543024979016192.
dc.relationPollet N, Schneider JL. Dynamic disintegration processes accompanying transport of the Holocene Flims sturzstrom (Swiss Alps). Earth and Planetary Science Letters. 2004;221(1-4):433-48.
dc.relationDufresne A, Zernack A, Bernard K, Thouret JC, Roverato M. Sedimentology of volcanic debris avalanche deposits. In: Volcanic Debris Avalanches. Springer; 2021. p. 175-210.
dc.relationUi T, Kawachi S, Neall VE. Fragmentation of debris avalanche material during flowage¿Evidence from the Pungarehu Formation, Mount Egmont, New Zealand. Journal of Volcanology and Geothermal Research. 1986;27(3-4):255-64.
dc.relationBrideau M, Procter J. Discontinuity orientation in jigsaw clasts from volcanic debris avalanche deposits and implications for emplacement mechanism. GeoQuébec. 2015;2015:20-3.
dc.relationJing L, Ottino JM, Lueptow RM, Umbanhowar PB. Rising and sinking intruders in dense granular flows. Physical Review Research. 2020;2(2):22069. Available from: https://doi.org/10.1103/PhysRevResearch.2.022069.
dc.relationMöbius ME, Lauderdale BE, Nagel SR, Jaeger HM. Size separation of granular particles. Nature. 2001;414(6861):270.
dc.relationVo TT, Mutabaruka P, Nezamabadi S, Delenne JY, Radjai F. Evolution of wet agglomerates inside inertial shear flow of dry granular materials. Physical Review E. 2020;101(3).
dc.relationCabrera M, Polanía O. Heaps of sand in flows within a split-bottom Couette cell. Physical Review E. 2020;102(6):062901.
dc.relationTang Z, Brzinski TA, Daniels KE. Granular rheology: measuring boundary forces with laser-cut leaf springs. In: EPJ Web of Conferences. vol. 140. EDP Sciences; 2017. p. 03035.
dc.relationTang Z, Brzinski TA, Shearer M, Daniels KE. Nonlocal rheology of dense granular flow in annular shear experiments. Soft matter. 2018;14(16):3040-8.
dc.relationFazelpour F, Tang Z, Daniels KE. The effect of grain shape and material on the nonlocal rheology of dense granular flows. Soft Matter. 2022.
dc.relationThielicke W SR. Particle Image Velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab. Journal of Open Research Software. 2021.
dc.relationPolania O. Heap formation on sand flows in a split-bottom Couette cell; 2020.
dc.relationMidi GDR. On dense granular flows. European Physical Journal E. 2004;14(4):341-65.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleStudy of parameters that controls competing action between segregation and disaggregation on an analogue jigsaw-fit block inside a dense granular flow
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución