dc.contributorJiménez Díaz, Elizabeth
dc.contributorUribe Ardila, Jesús Alfredo
dc.contributorMiscione, Gian Pietro
dc.contributorGrupo de Investigación en Bioquímica Aplicada
dc.creatorGalindo León, Laura Daniela
dc.date.accessioned2022-08-01T15:03:32Z
dc.date.available2022-08-01T15:03:32Z
dc.date.created2022-08-01T15:03:32Z
dc.date.issued2022-07-27
dc.identifierhttp://hdl.handle.net/1992/59449
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.description.abstractEl cáncer se ha convertido en la segunda causa de muerte a nivel mundial, responsable de casi 10 millones de muertes en 2020. Por ello, a lo largo de los años hemos buscado desarrollar nuevas terapias que puedan llegar a ser más efectivas y con la mínima cantidad de efectos adversos en el paciente. Una opción es el uso de la terapia combinatoria (TC), en la que se pueden utilizar combinaciones de fármacos con acción antitumoral para conseguir una mayor eficacia con dosis más bajas, reduciendo los efectos adversos. Dentro de estas nuevas terapias, se ha encontrado que diferentes fármacos que se utilizan para el tratamiento de otras enfermedades como la diabetes o la hipertensión han mostrado actividad sobre células de diferentes tipos de cáncer. Además, dado que estos medicamentos ya están aprobados por las agencias reguladoras, los costos de investigación más bajos y otras ventajas podrían hacer que este tipo de terapias sea más accesible. Con todo esto en mente, el presente proyecto tiene como objetivo diseñar un protocolo de extracción para obtener los principios activos de los medicamentos Losartán Potásico y Clorhidrato de Metformina a partir de pastillas comerciales y caracterizar lo que sucede a nivel molecular estudiando los mecanismos de acción de estos medicamentos en combinación con la quimioterapia doxorrubicina mediante técnicas como la citometría de flujo y los ensayos de Western blot para comprender los determinantes su interacción en línea celular de cáncer colorrectal HCT116.
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Química
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Química
dc.relationSiegel, R. L.; Miller, K. D.; Jemal, A. Cancer Statistics, 2019. CA. Cancer J. Clin. 2019, 69 (1), 7-34. https://doi.org/10.3322/caac.21551.
dc.relationFung, A.; Horton, S.; Zabih, V.; Denburg, A.; Gupta, S. Cost and Cost-Effectiveness of Childhood Cancer Treatment in Low-Income and Middle-Income Countries: A Systematic Review. BMJ Glob. Heal. 2019, 4 (5), e001825. https://doi.org/10.1136/bmjgh-2019-001825.
dc.relationHealth at a Glance: Latin America and the Caribbean 2020; OECD, 2020. https://doi.org/10.1787/6089164f-en.
dc.relationPardo, C.; De Vries, E.; Buitrago, L.; Gamboa, Ó. Atlas de Mortalidad Por Cáncer En Colombia. Cuarta Edición; 2017; Vol. 1.
dc.relationMahvi, D. A.; Liu, R.; Grinstaff, M. W.; Colson, Y. L.; Raut, C. P. Local Cancer Recurrence: The Realities, Challenges, and Opportunities for New Therapies. CA. Cancer J. Clin. 2018, 68 (6), 488-505. https://doi.org/10.3322/caac.21498.
dc.relationHanahan, D.; Weinberg, R. A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144 (5), 646-674. https://doi.org/10.1016/j.cell.2011.02.013.
dc.relationJeggo, P. A.; Pearl, L. H.; Carr, A. M. DNA Repair, Genome Stability and Cancer: A Historical Perspective. Nat. Rev. Cancer 2016, 16 (1), 35-42. https://doi.org/10.1038/nrc.2015.4.
dc.relationWong, C. H.; Siah, K. W.; Lo, A. W. Estimation of Clinical Trial Success Rates and Related Parameters. Biostatistics 2019, 20 (2), 273-286. https://doi.org/10.1093/biostatistics/kxx069.
dc.relationBhatia, K.; Bhumika; Das, A. Combinatorial Drug Therapy in Cancer - New Insights. Life Sci. 2020, 258, 118134. https://doi.org/10.1016/j.lfs.2020.118134.
dc.relationDahl, B. J. The Cost of Oncology Drugs: A Pharmacy Perspective, Part 2. Fed. Pract. 2016, 33 (7), 35-39.
dc.relationCascorbi, I. Drug Interactions. Dtsch. Arztebl. Int. 2012. https://doi.org/10.3238/arztebl.2012.0546.
dc.relationChou, T.-C. The Mass-Action Law Based Algorithms for Quantitative Econo-Green Bio-Research. Integr. Biol. 2011, 3 (5), 548-559. https://doi.org/10.1039/c0ib00130a.
dc.relationZhang, Z.; Zhou, L.; Xie, N.; Nice, E. C.; Zhang, T.; Cui, Y.; Huang, C. Overcoming Cancer Therapeutic Bottleneck by Drug Repurposing. Signal Transduct. Target. Ther. 2020, 5 (1), 113. https://doi.org/10.1038/s41392-020-00213-8.
dc.relationCox, J.; Weinman, S. Mechanisms of Doxorubicin Resistance in Hepatocellular Carcinoma. Hepatic Oncol. 2016, 3 (1), 57-59. https://doi.org/10.2217/hep.15.41.
dc.relationMelo Torres, C. P. Rational Approach to Evaluate Interaction Effect on Combination Therapy for Cancer Treatment with Doxorubicin and Non- Traditional Chemotherapeutic Drugs (Metformin, Losartan, Taurine and Salicylic Acid ). 2021, 1-101.
dc.relationMcIntyre, M.; Caffe, S. E.; Michalak, R. A.; Reid, J. L. Losartan, an Orally Active Angiotensin (AT1) Receptor Antagonist: A Review of Its Efficacy and Safety in Essential Hypertension. Pharmacol. Ther. 1997, 74 (2), 181-194. https://doi.org/10.1016/S0163-7258(97)82002-5.
dc.relationBailey, C. J. Metformin: Historical Overview. Diabetologia 2017, 60 (9), 1566-1576. https://doi.org/10.1007/s00125-017-4318-z.
dc.relationWagner, K.-H.; Brath, H. A Global View on the Development of Non Communicable Diseases. Prev. Med. (Baltim). 2012, 54, S38-S41. https://doi.org/10.1016/j.ypmed.2011.11.012.
dc.relationDaar, A. S.; Singer, P. A.; Leah Persad, D.; Pramming, S. K.; Matthews, D. R.; Beaglehole, R.; Bernstein, A.; Borysiewicz, L. K.; Colagiuri, S.; Ganguly, N.; Glass, R. I.; Finegood, D. T.; Koplan, J.; Nabel, E. G.; Sarna, G.; Sarrafzadegan, N.; Smith, R.; Yach, D.; Bell, J. Grand Challenges in Chronic Non-Communicable Diseases. Nature 2007, 450 (7169), 494-496. https://doi.org/10.1038/450494a.
dc.relationBurns, H. Germ Theory: Invisible Killers Revealed. BMJ 2007, 334 (suppl_1), s11-s11. https://doi.org/10.1136/bmj.39044.597292.94.
dc.relationMaresova, P.; Javanmardi, E.; Barakovic, S.; Barakovic Husic, J.; Tomsone, S.; Krejcar, O.; Kuca, K. Consequences of Chronic Diseases and Other Limitations Associated with Old Age - a Scoping Review. BMC Public Health 2019, 19 (1), 1431. https://doi.org/10.1186/s12889-019-7762-5.
dc.relationAmuna, P.; Zotor, F. B. Epidemiological and Nutrition Transition in Developing Countries: Impact on Human Health and Development. Proc. Nutr. Soc. 2008, 67 (1), 82-90. https://doi.org/10.1017/S0029665108006058.
dc.relationHajat, C.; Stein, E. The Global Burden of Multiple Chronic Conditions: A Narrative Review. Prev. Med. Reports 2018, 12, 284-293. https://doi.org/10.1016/j.pmedr.2018.10.008.
dc.relationWHO. Noncommunicable diseases.
dc.relationLópez-Otín, C.; Blasco, M. A.; Partridge, L.; Serrano, M.; Kroemer, G. The Hallmarks of Aging. Cell 2013, 153 (6), 1194-1217. https://doi.org/10.1016/j.cell.2013.05.039.
dc.relationGuerville, F.; De Souto Barreto, P.; Ader, I.; Andrieu, S.; Casteilla, L.; Dray, C.; Fazilleau, N.; Guyonnet, S.; Langin, D.; Liblau, R.; Parini, A.; Valet, P.; Vergnolle, N.; Rolland, Y.; Vellas, B. REVISITING THE HALLMARKS OF AGING TO IDENTIFY MARKERS OF BIOLOGICAL AGE. J. Prev. Alzheimer's Dis. 2019, 1-9. https://doi.org/10.14283/jpad.2019.50.
dc.relationKotas, M. E.; Medzhitov, R. Homeostasis, Inflammation, and Disease Susceptibility. Cell 2015, 160 (5), 816-827. https://doi.org/10.1016/j.cell.2015.02.010.
dc.relationHanson, M.; Godfrey, K. M.; Lillycrop, K. A.; Burdge, G. C.; Gluckman, P. D. Developmental Plasticity and Developmental Origins of Non-Communicable Disease: Theoretical Considerations and Epigenetic Mechanisms. Prog. Biophys. Mol. Biol. 2011, 106 (1), 272-280. https://doi.org/10.1016/j.pbiomolbio.2010.12.008.
dc.relationFurman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D. W.; Fasano, A.; Miller, G. W.; Miller, A. H.; Mantovani, A.; Weyand, C. M.; Barzilai, N.; Goronzy, J. J.; Rando, T. A.; Effros, R. B.; Lucia, A.; Kleinstreuer, N.; Slavich, G. M. Chronic Inflammation in the Etiology of Disease across the Life Span. Nat. Med. 2019, 25 (12), 1822-1832. https://doi.org/10.1038/s41591-019-0675-0.
dc.relationStrous, G. J.; Almeida, A. D. S.; Putters, J.; Schantl, J.; Sedek, M.; Slotman, J. A.; Nespital, T.; Hassink, G. C.; Mol, J. A. Growth Hormone Receptor Regulation in Cancer and Chronic Diseases. Front. Endocrinol. (Lausanne). 2020, 11. https://doi.org/10.3389/fendo.2020.597573.
dc.relationAguilera, A.; Gómez-González, B. Genome Instability: A Mechanistic View of Its Causes and Consequences. Nat. Rev. Genet. 2008, 9 (3), 204-217. https://doi.org/10.1038/nrg2268.
dc.relationShen, Z. Genomic Instability and Cancer: An Introduction. J. Mol. Cell Biol. 2011, 3 (1), 1-3. https://doi.org/10.1093/jmcb/mjq057.
dc.relationZhivotovsky, B.; Kroemer, G. Apoptosis and Genomic Instability. Nat. Rev. Mol. Cell Biol. 2004, 5 (9), 752-762. https://doi.org/10.1038/nrm1443.
dc.relationHanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12 (1), 31-46. https://doi.org/10.1158/2159-8290.CD-21-1059.
dc.relationAbdulla Mahmood, S. Mechanisms of Action of Metformin. In Metformin - Pharmacology and Drug Interactions; IntechOpen, 2021. https://doi.org/10.5772/intechopen.99189.
dc.relationChen, K.; Li, Y.; Guo, Z.; Zeng, Y.; Zhang, W.; Wang, H. Metformin: Current Clinical Applications in Nondiabetic Patients with Cancer. Aging (Albany. NY). 2020, 12 (4), 3993-4009. https://doi.org/10.18632/aging.102787.
dc.relationSanli, T.; Steinberg, G. R.; Singh, G.; Tsakiridis, T. AMP-Activated Protein Kinase (AMPK) beyond Metabolism. Cancer Biol. Ther. 2014, 15 (2), 156-169. https://doi.org/10.4161/cbt.26726.
dc.relationZhang, P.; Li, H.; Tan, X.; Chen, L.; Wang, S. Association of Metformin Use with Cancer Incidence and Mortality: A Meta-Analysis. Cancer Epidemiol. 2013, 37 (3), 207-218. https://doi.org/10.1016/j.canep.2012.12.009.
dc.relationGodugu, C.; Patel, A. R.; Doddapaneni, R.; Marepally, S.; Jackson, T.; Singh, M. Inhalation Delivery of Telmisartan Enhances Intratumoral Distribution of Nanoparticles in Lung Cancer Models. J. Control. Release 2013, 172 (1), 86-95. https://doi.org/10.1016/j.jconrel.2013.06.036.
dc.relationSmith, G. R.; Missailidis, S. Cancer, Inflammation and the AT1 and AT2 Receptors. J. Inflamm. (Lond). 2004, 1 (1), 3. https://doi.org/10.1186/1476-9255-1-3.
dc.relationHashemzehi, M.; Naghibzadeh, N.; Asgharzadeh, F.; Mostafapour, A.; Hassanian, S. M.; Ferns, G. A.; Cho, W. C.; Avan, A.; Khazaei, M. The Therapeutic Potential of Losartan in Lung Metastasis of Colorectal Cancer. EXCLI J. 2020, 19, 927-935. https://doi.org/10.17179/excli2020-2093.
dc.relationHashemzehi, M.; Rahmani, F.; Khoshakhlagh, M.; Avan, A.; Asgharzadeh, F.; Barneh, F.; Moradi-Marjaneh, R.; Soleimani, A.; Fiuji, H.; Ferns, G. A.; Ryzhikov, M.; Jafari, M.; Khazaei, M.; Hassanian, S. M. Angiotensin Receptor Blocker Losartan Inhibits Tumor Growth of Colorectal Cancer. EXCLI J. 2021, 20, 506-521. https://doi.org/10.17179/excli2020-3083.
dc.relationHashemzehi, M.; Rahmani, F.; Khoshakhlagh, M.; Avan, A.; Asgharzadeh, F.; Barneh, F.; Moradi-Marjaneh, R.; Soleimani, A.; Fiuji, H.; Ferns, G. A.; Ryzhikov, M.; Jafari, M.; Khazaei, M.; Hassanian, S. M. Angiotensin Receptor Blocker Losartan Inhibits Tumor Growth of Colorectal Cancer. EXCLI J. 2021, 20, 506-521. https://doi.org/10.17179/excli2020-3083.
dc.relationPorta, C.; Paglino, C.; Mosca, A. Targeting PI3K/Akt/MTOR Signaling in Cancer. Front. Oncol. 2014, 4. https://doi.org/10.3389/fonc.2014.00064.
dc.relationFDA. Q6A Specifications: Test Procedures and Acceptance Criteria for New Drug Substances and New Drug Products: Chemical Substances https://www.fda.gov/regulatory-information/search-fda-guidance-documents/q6a-specifications-test-procedures-and-acceptance-criteria-new-drug-substances-and-new-drug-products (accessed Jun 5, 2022).
dc.relationPicot, J.; Guerin, C. L.; Le Van Kim, C.; Boulanger, C. M. Flow Cytometry: Retrospective, Fundamentals and Recent Instrumentation. Cytotechnology 2012, 64 (2), 109-130. https://doi.org/10.1007/s10616-011-9415-0.
dc.relationAdan, A.; Alizada, G.; Kiraz, Y.; Baran, Y.; Nalbant, A. Flow Cytometry: Basic Principles and Applications. Crit. Rev. Biotechnol. 2017, 37 (2), 163-176. https://doi.org/10.3109/07388551.2015.1128876.
dc.relationHnasko, T. S.; Hnasko, R. M. The Western Blot; 2015; pp 87-96. https://doi.org/10.1007/978-1-4939-2742-5_9.
dc.relationXu, Z.; Chen, L.; Xiao, Z.; Zhu, Y.; Jiang, H.; Jin, Y.; Gu, C.; Wu, Y.; Wang, L.; Zhang, W.; Zuo, J.; Zhou, D.; Luan, J.; Shen, J. Potentiation of the Anticancer Effect of Doxorubicinin Drug-Resistant Gastric Cancer Cells by Tanshinone IIA. Phytomedicine 2018, 51 (May), 58-67. https://doi.org/10.1016/j.phymed.2018.05.012.
dc.relationSingh, S. K.; Banerjee, S.; Acosta, E. P.; Lillard, J. W.; Singh, R. Resveratrol Induces Cell Cycle Arrest and Apoptosis with Docetaxel in Prostate Cancer Cells via a P53/P21WAF1/CIP1 and P27KIP1 Pathway. Oncotarget 2017, 8 (10), 17216-17228. https://doi.org/10.18632/oncotarget.15303.
dc.relationMelo Torres, C. P. Implementación Del Ensayo MTT (Bromuro de 3-(3,4 -Dimetiltiazol-2-Il)-2,5- Difeniltetrazolio) En Líneas Celulares Tumorales y Determinación de La Viabilidad Celular de Análogos de Ácidos Nucleico, Universidad de los Andes, 2017.
dc.relationCrowley, L. C.; Marfell, B. J.; Scott, A. P.; Waterhouse, N. J. Quantitation of Apoptosis and Necrosis by Annexin V Binding, Propidium Iodide Uptake, and Flow Cytometry. Cold Spring Harb. Protoc. 2016, 2016 (11), pdb.prot087288. https://doi.org/10.1101/pdb.prot087288.
dc.relationQuah, B. J. C.; Parish, C. R. The Use of Carboxyfluorescein Diacetate Succinimidyl Ester (CFSE) to Monitor Lymphocyte Proliferation. J. Vis. Exp. 2010, No. 44. https://doi.org/10.3791/2259.
dc.relationKoester, S. K.; Bolton, W. E. Intracellular Markers. J. Immunol. Methods 2000, 243 (1-2), 99-106. https://doi.org/10.1016/S0022-1759(00)00239-8.
dc.relationabcam. Flow cytometry intracellular staining protocol https://www.abcam.com/protocols/flow-cytometry-intracellular-staining-protocol.
dc.relationWater, D.; Base, T. Western Blotting Protocol. 4-6.
dc.relationBabak, M. V.; Chong, K. R.; Rapta, P.; Zannikou, M.; Tang, H. M.; Reichert, L.; Chang, M. R.; Kushnarev, V.; Heffeter, P.; Meier-Menches, S. M.; Lim, Z. C.; Yap, J. Y.; Casini, A.; Balyasnikova, I. V.; Ang, W. H. Interfering with Metabolic Profile of Triple-Negative Breast Cancers Using Rationally Designed Metformin Prodrugs. Angew. Chemie Int. Ed. 2021, 60 (24), 13405-13413. https://doi.org/10.1002/anie.202102266.
dc.relationEllen, N.; Hill, D.; Us, P. Ep 1 833 961 B1 (12). 2011, 21 (13), 4931-4941.
dc.relationMohamed, D.; Elshahed, M. S.; Nasr, T.; Aboutaleb, N.; Zakaria, O. Novel LC-MS/MS Method for Analysis of Metformin and Canagliflozin in Human Plasma: Application to a Pharmacokinetic Study. BMC Chem. 2019, 13 (3), 1-11. https://doi.org/10.1186/s13065-019-0597-4.
dc.relationZhao, Z. (Zack); Wang, Q.; Tsai, E. W.; Qin, X.-Z.; Ip, D. Identification of Losartan Degradates in Stressed Tablets by LC-MS and LC-MS/MS. J. Pharm. Biomed. Anal. 1999, 20 (1-2), 129-136. https://doi.org/10.1016/S0731-7085(99)00004-7.
dc.relationLou, Y.; Zuo, L. Quantification of Losartan Potassium Polymorphs Using Powder X-Ray Diffraction. J. AOAC Int. 2021, 104 (3), 579-584. https://doi.org/10.1093/jaoacint/qsaa166.
dc.relationCampbell, J.; C., G.; Anil M. POLYMORPHS OF LOSARTAN AND THE PROCESS FOR THE PREPARATION OF FORM II OF LOSARTAN. US 5,608,075 A, 1997.
dc.relationMarklein, D.; Graab, U.; Naumann, I.; Yan, T.; Ridzewski, R.; Nitzki, F.; Rosenberger, A.; Dittmann, K.; Wienands, J.; Wojnowski, L.; Fulda, S.; Hahn, H. PI3K Inhibition Enhances Doxorubicin-Induced Apoptosis in Sarcoma Cells. PLoS One 2012, 7 (12), e52898. https://doi.org/10.1371/journal.pone.0052898.
dc.relationZatterale, F.; Longo, M.; Naderi, J.; Raciti, G. A.; Desiderio, A.; Miele, C.; Beguinot, F. Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Front. Physiol. 2020, 10. https://doi.org/10.3389/fphys.2019.01607.
dc.relationMeng, Y.; Wang, W.; Kang, J.; Wang, X.; Sun, L. Role of the PI3K/AKT Signalling Pathway in Apoptotic Cell Death in the Cerebral Cortex of Streptozotocin-Induced Diabetic Rats. Exp. Ther. Med. 2017, 13 (5), 2417-2422. https://doi.org/10.3892/etm.2017.4259.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleExtracción del principio activo de pastillas comerciales de Losartán Potásico y Clorhidrato de Metformina y el estudio de su terapia combinatoria con Doxorrubicina
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución