dc.contributorGonzález Arango, Catalina
dc.contributorMadriñán Restrepo, Santiago
dc.contributorVillegas Palacio, Juan Camilo
dc.contributorGrupo de Palinología y Paleoecología Tropical
dc.creatorOrejuela Cardona, Catalina
dc.date.accessioned2022-08-23T16:25:48Z
dc.date.available2022-08-23T16:25:48Z
dc.date.created2022-08-23T16:25:48Z
dc.date.issued2022-08-01
dc.identifierhttp://hdl.handle.net/1992/60023
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.description.abstractEl cambio climático y su impacto sobre los diferentes ecosistemas, es un tema de gran importancia para la conservación de la biodiversidad y del medio ambiente a nivel global. Recientemente, se ha discutido sobre la consideración del cambio climático como la mayor amenaza en la prevalencia de los ecosistemas. Sin embargo, este debe ser entendido como la confluencia de un complejo de factores que interactúan en simultaneidad y no como factores independientes (Thomas et al. 2004). Además de su impacto sobre el aumento de la temperatura, el cambio climático influye sobre los regímenes de precipitación, la química atmosférica y la dinámica y formación de las nubes, entre otros (Helmer et al. 2019; Poveda and Mesa 1999). Por esto, los ecosistemas de montaña que dependen de las nubes como fuente principal o importante de agua, se van a ver gravemente afectados, principalmente los bosques nublados neotropicales y los páramos (Helmer et al. 2019). Por otra parte, las nubes y la neblina confieren a la atmósfera propiedades amortiguadoras sobre los efectos de otros parámetros climáticos como por ejemplo las temperatura, y es por ello es que conocer las relaciones entre biota y nubes y neblina, es fundamental para predecir la supervivencia de los ecosistemas de montaña bajo escenarios de Cambio Climático. Es así como, estudiar la respuesta biótia a las variaciones en los regímenes de precipitación que son modulados por procesos orográficos, es relevante para la iden'ficación de microrefugios potenciales bajo futuros escenarios de climas más calientes. Por consiguiente, en este estudio, queremos estudiar el impacto de las variaciones en la humedad rela'va (precipitación horizontal y vertical) en la plasticidad morfofisiológica de la bromelia epífita Guzmania triangularis a lo largo de un gradiente de elevación en un bosque nublado en el norte de los Andes occidentales colombianos.
dc.description.abstractTropical species occupy narrower climatic niches compared to species in temperate zones, which renders them more vulnerable to climate change. Most research addressing resilience has emphasised their response towards predicted changes in temperature; much less evidence is available on the impacts of covarying hydric parameters, which are arguably crucial for many life forms and entire ecosystems. The tropical montane cloud forests (TMCF) are unique and species-rich ecosystems, with high levels of endemism and a strong dependence on high environmental humidity. The high abundance of epiphytes is one of the TMCF hallmarks and a key factor to sustain its high levels of biodiversity. Therefore, the study of epiphytes phenotypic plasticity should improve our ability to predict the effect of climatic variation on TMCF. We studied the relationship between environmental humidity and morphophysiological functional traits in the epiphyte bromeliad Guzmania triangularis along an altitudinal gradient, and across windward and leeward slopes, in a montane cloud forest of the Colombian northwestern Andes. To characterise climate, we installed field stations recording humidity, rain and run-off precipitation, and temperature. To examine associated variation in bromeliad functional traits, we combined correlative and manipulative approaches, including a translocation experiment among slopes and elevation. As output variables, we examined bromeliad traits associated to water balance and photosynthetic performance, namely the trichome and stomata densities, and the colouration and morphology of the leaves. As expected, daily and elevational variation in temperature was much larger (between 10-20 C°) than concomitant variation in relative humidity, which remained most of the time at the saturation point. The ratio of rain to run-off precipitation was unrelated to elevation, and more variable within the windward compared to the leeward slope. Among the plant functional traits, the trichome densities covaried negatively with elevation on the windward slope, but positively on the leeward slope. An opposite interaction term was found regarding stomata densities on the base leaves underside: the plants exhibited more stomata at higher elevation on the windward slope, but less at higher elevation on the leeward slope. After plants translocation, we observed that stomata densities on the apex underside and the morphology of the leaves varied due to the slope change and the elevational gradient. These variations can be attributed to phenotypic plasticity in response to microclimatic variations. This intraspecific variation in bromeliads functional traits is related to both elevation and precipitation, and would thereby affect their ecological performance under scenarios of climate change.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ciencias Biológicas
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Ciencias Biológicas
dc.relationAgudelo, N., Mora, J. M., Pérard, S., & Solórzano, J. C. J. (2012). Extensión del Bosque Nublado y su Contribución de la Lluvia Horizontal a la Precipitación Total en la Reserva Biológica Uyuca, Honduras. Ceiba, 53(2), 109-123.
dc.relationAlvarado-Fajardo, V. M., Morales-Puentes, M. E., & Larrota-Estupiñán, E. F. (2013). Bromeliaceae en algunos municipios de Boyacá y Casanare, Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 37(142), 5-18.
dc.relationAmézquita, A., Lima, A. P., Jehle, R., Castellanos, L., Ramos, O., Crawford, A. J., ... & Hoedl, W. (2009). Calls, colours, shape, and genes: a multi-trait approach to the study of geographic variation in the Amazonian frog Allobates femoralis. Biological Journal of the Linnean Society, 98(4), 826-838.
dc.relationBarron, E. J. (1995). Tropical climate stability and implications for the distribution of life. Effects of past global change on life. National Academy Press Studies in Geophysics, Washington, DC, 108-117.
dc.relationBetancourt, J., & Jaramillo, M. A. (1998). Distribución de la familia Bromeliaceae en dos vertientes andinas del sur de Colombia. Selbyana, 52-65.
dc.relationBenzing, D. H., Henderson, K., Kessel, B., & Sulak, J. (1976). The absorptive capacities of bromeliad trichomes. American Journal of Botany, 63(7), 1009-1014.
dc.relationBenzing, D. H., & Renfrow, A. (1971). The significance of photosynthetic efficiency to habitat preference and phylogeny among tillandsioid bromeliads. Botanical Gazette, 132(1), 19-30.
dc.relationBöhmer, H. J. (2011). Vulnerability of tropical montane rain forest ecosystems due to climate change. Coping with Global Environmental Change, Disasters and Security (pp. 789-802). Springer, Berlin, Heidelberg.
dc.relationBruijnzeel, L. A., & Proctor, J. (1995). Hydrology and biogeochemistry of tropical montane cloud forests: what do we really know?. Tropical montane cloud forests (pp. 38-78). Springer, New York, NY.
dc.relationBruijnzeel, L. A., & Veneklaas, E. J. (1998). Climatic conditions and tropical montane forest productivity: the fog has not lifted yet. Ecology, 79(1), 3-9.
dc.relationBubb, P., May, I., Miles, L. & Sayer, J. (2004). Cloud Forest Agenda. UNEP-WCMC, Cambridge, UK.
dc.relationBuschmann, C., & Lichtenthaler, H. K. (1998). Principles and characteristics of multi-colour fluorescence imaging of plants. Journal of Plant Physiology, 152(2-3), 297-314.
dc.relationCach-Pérez, M. J., Andrade, J. L., Cetzal-Ix, W., & Reyes-García, C. (2015). Environmental influence on the inter-and intraspecific variation in the density and morphology of stomata and trichomes of epiphytic bromeliads of the Yucatan Peninsula. Botanical Journal of the Linnean Society, 181(3), 441-458.
dc.relationCach-Pérez, M. J., Andrade, J. L., & Reyes-García, C. (2014). La susceptibilidad de las bromeliáceas epífitas al cambio climático. Botanical Sciences, 92(2), 157-168.
dc.relationCarter, G. A., & Knapp, A. K. (2001). Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration. American journal of botany, 88(4), 677-684.
dc.relationChaves-Barrantes, N. F., & Gutiérrez-Soto, M. V. (2017). Respuestas al estrés por calor en los cultivos. I. Aspectos moleculares, bioquímicos y fisiológicos. Agronomía Mesoamericana, 28(1), 237-253.
dc.relationCondit, R., Hubbell, S. P., & Foster, R. B. (1996). Changes in tree species abundance in a Neotropical forest: impact of climate change. Journal of tropical ecology, 12(2), 231-256.
dc.relationDudley, E. C. (1978). Adaptive radiation in the Melastomataceae along an altitudinal gradient in Peru. Biotropica, 134-143.
dc.relationEkern, P. C. (1964). Direct interception of cloud water on Lanaihale, Hawaii. Soil Science Society of America Journal, 28(3), 419-421.
dc.relationFadrique, B., Báez, S., Duque, Á., Malizia, A., Blundo, C., Carilla, J., ... & Feeley, K. J. (2018). Widespread but heterogeneous responses of Andean forests to climate change. Nature, 564(7735), 207-212.
dc.relationFarji-Brener, A., Valverde, O., Paolini, L., La Torre, M. D. L. A., Quintero, E., Bonaccorso, E., ... & Villalobos, R. (2002). Función del acumen en las hojas y su distribución vertical en un bosque lluvioso tropical de Costa Rica. Revista de Biología Tropical, 50(2), 561-567.
dc.relationFoster, P. (2001). The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Reviews, 55(1-2), 73-106.
dc.relationFreiberg, M. (1997). Spatial and temporal pattern of temperature and humidity of a tropical premontane rain forest tree in Costa Rica. Selbyana, 77-84.
dc.relationGay, A. P., & Hurd, R. G. (1975). The influence of light on stomatal density in the tomato. New Phytologist, 75(1), 37-46.
dc.relationGeller, G. N., & Smith, W. K. (1982). Influence of leaf size, orientation, and arrangement on temperature and transpiration in three high-elevation, large-leafed herbs. Oecologia, 53(2), 227-234.
dc.relationGentry, A. H. (1992). Tropical forest biodiversity: distributional patterns and their conservational significance. Oikos, 19-28.
dc.relationGraham, E. A., Mulkey, S. S., Kitajima, K., Phillips, N. G., & Wright, S. J. (2003). Cloud cover limits net CO2 uptake and growth of a rainforest tree during tropical rainy seasons. Proceedings of the National Academy of Sciences, 100(2), 572-576.
dc.relationGrime, J. P. (1974). Vegetation classification by reference to strategies. Nature, 250(5461), 26-31.
dc.relationGuyot, G., Scoffoni, C., & Sack, L. (2012). Combined impacts of irradiance and dehydration on leaf hydraulic conductance: insights into vulnerability and stomatal control. Plant, Cell & Environment, 35(5), 857-871.
dc.relationHamilton, L. S., Juvik, J. O., & Scatena, F. N. (1995). The Puerto Rico tropical cloud forest symposium: introduction and workshop synthesis. Tropical montane cloud forests (pp. 1-18). Springer, New York, NY.
dc.relationHelmer, E. H., Gerson, E. A., Baggett, L. S., Bird, B. J., Ruzycki, T. S., & Voggesser, S. M. (2019). Neotropical cloud forests and páramo to contract and dry from declines in cloud immersion and frost. PloS one, 14(4), e0213155.
dc.relationHenderson, A., Churchill, S. P., & Luteyn, J. L. (1991). Neotropical plant diversity. Nature, 351(6321), 21-22.
dc.relationHietz, P., & Briones, O. (1998). Correlation between water relations and within-canopy distribution of epiphytic ferns in a Mexican cloud forest. Oecologia, 114(3), 305-316.
dc.relationHietz, P., Wagner, K., Nunes Ramos, F., Cabral, J. S., Agudelo, C., Benavides, A. M., ... & Zotz, G. (2021). Putting vascular epiphytes on the traits map. Journal of Ecology, 110(2), 340-358.
dc.relationHildebrandt, A., & Eltahir, E. A. (2008). Using a horizontal precipitation model to investigate the role of turbulent cloud deposition in survival of a seasonal cloud forest in Dhofar. Journal of Geophysical Research: Biogeosciences, 113(G4).
dc.relationIvey, C. T., & De Silva, N. (2001). A test of the function of drip tips. Biotropica, 188-191.
dc.relationJuvik, J., & Nullet, D. (1995). Comments on "A Proposed Standard Fog Collector for Use in High- Elevation Regions". Journal of Applied Meteorology (1988-2005), 34(9), 2108-2110.
dc.relationKonapala, G., Mishra, A. K., Wada, Y., & Mann, M. E. (2020). Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nature communications, 11(1), 1-10.
dc.relationKörner, C., Neumayer, M., Menendez-Riedl, S. P., & Smeets-Scheel, A. (1989). Functional morphology of mountain plants. Flora, 182(5-6), 353-383.
dc.relationLichtenthaler, H. K., Wenzel, O., Buschmann, C., & Gitelson, A. (1998). Plant stress detection by reflectance and fluorescence. Annals of the New York Academy of Sciences, 851, 271-285.
dc.relationLeo, M. (1995). The importance of tropical montane cloud forest for preserving vertebrate endemism in Peru: the Rio Abiseo National Park as a case study. Tropical montane cloud forests (pp. 198-211). Springer, New York, NY.
dc.relationMittermeier, R. A., Myers, N., Thomsen, J. B., Da Fonseca, G. A., & Olivieri, S. (1998). Biodiversity hotspots and major tropical wilderness areas: approaches to setting conservation priorities. Conservation biology, 516-520.
dc.relationMcConnaughay, K. D. M., & Coleman, J. S. (1999). Biomass allocation in plants: ontogeny or optimality? A test along three resource gradients. Ecology, 80(8), 2581-2593.
dc.relationMontes, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J. C., Valencia, V., ... & Niño, H. (2015). Middle Miocene closure of the Central American seaway. Science, 348(6231), 226-229.
dc.relationMüller, L. L. B., Albach, D. C., & Zotz, G. (2017). Are 3° C too much?: thermal niche breadth in Bromeliaceae and global warming. Journal of Ecology, 105(2), 507-516.
dc.relationMüller, L. L. B., Albach, D. C., & Zotz, G. (2018). Growth responses to elevated temperatures and the importance of ontogenetic niche shifts in Bromeliaceae. New Phytologist, 217(1), 127-139.
dc.relationMyers, N. (1990). The biodiversity challenge: expanded hot-spots analysis. Environmentalist, 10(4), 243-256.
dc.relationNadkarni, N. M., & Solano, R. (2002). Potential effects of climate change on canopy communities in a tropical cloud forest: an experimental approach. Oecologia, 131(4), 580-586.
dc.relationNeves, B., Zanella, C. M., Kessous, I. M., Uribbe, F. P., Salgueiro, F., Bered, F., ... & Costa, A. F. (2020). Drivers of bromeliad leaf and floral bract variation across a latitudinal gradient in the Atlantic Forest. Journal of biogeography, 47(1), 261-274.
dc.relationOlguín-Monroy, H. C., Gutiérrez-Blando, C., Ríos-Muñoz, C. A., León-Paniagua, L., & Navarro-Sigüenza, A. G. (2013). Regionalización biogeográfica de la mastofauna de los bosques tropicales perennifolios de Mesoamérica. Revista de Biología Tropical, 61(2), 937-969.
dc.relationOmetto, J.P., K. Kalaba, G.Z. Anshari, N. Chacón, A. Farrell, S.A. Halim, H. Neufeldt, and R. Sukumar, 2022: Cross-Chapter Paper 7: Tropical Forests. In: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press. In Press.
dc.relationPérez, M. J. C., García, C. R., & Torres, J. L. A. (2017). Vida en las alturas: plantas indicadoras del cambio climático. Ecofronteras, 26-28.
dc.relationPetter, G., Wagner, K., Wanek, W., Sánchez Delgado, E. J., Zotz, G., Cabral, J. S., & Kreft, H. (2016). Functional leaf traits of vascular epiphytes: vertical trends within the forest, intra¿and interspecific trait variability, and taxonomic signals. Functional Ecology, 30(2), 188-198.
dc.relationPetit, M., Céréghino, R., Carrias, J. F., Corbara, B., Dezerald, O., Petitclerc, F., ... & Leroy, C. (2014). Are ontogenetic shifts in foliar structure and resource acquisition spatially conditioned in tank-bromeliads?. Botanical Journal of the Linnean Society, 175(2), 299-312.
dc.relationPicado-Twight, C. (1913). Les broméliacées épiphytes considérées comme milieu biologique. Bulletin Scientifique de la France et de la Belgique, 47(3), 215-360.
dc.relationRehm, E. M., & Feeley, K. J. (2015). The inability of tropical cloud forest species to invade grasslands above treeline during climate change: potential explanations and consequences. Ecography, 38(12), 1167-1175.
dc.relationRinawati, F., Stein, K., & Lindner, A. (2013). Climate change impacts on biodiversity-the setting of a lingering global crisis. Diversity, 5(1), 114-123.
dc.relationRamírez, A.I. 2011. Contribución hidrológica de la precipitación horizontal en un bosque nublado de la zona del Trifinio, América Central. Tesis Magister Scientiae en Manejo y Gestión Integral de Cuencas Hidrográficas, CATIE, Costa Rica. 87 p
dc.relationRodrigues Pereira, T. A., da Silva, L. C., Azevedo, A. A., Francino, D. M. T., dos Santos Coser, T., & Pereira, J. D. (2013). Leaf morpho-anatomical variations in Billbergia elegans and Neoregelia mucugensis (Bromeliaceae) exposed to low and high solar radiation. Botany, 91(6), 327-334.
dc.relationRohlf, F. J., & Slice, D. (1990). Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic biology, 39(1), 40-59.
dc.relationRosado-Calderón, A. T., Tamayo-Chim, M., de la Barrera, E., Ramírez-Morillo, I. M., Andrade, J. L., Briones, O., & Reyes-García, C. (2020). High resilience to extreme climatic changes in the CAM epiphyte Tillandsia utriculata L. (Bromeliaceae). Physiologia plantarum, 168(3), 547-562.
dc.relationSchellekens, J., Bruijnzeel, L. A., Wickel, A. J., Scatena, F. N., and Silver, W. L. (1998). Interception of horizontal precipitation by elfin cloud forest in the Luquillo Mountains, eastern Puerto Rico. In Schemenauer, R. S. & Bridgman, H. A. (Eds), Proceedings of the 1st International Conference on Fog and Fog Collection, pp. 29¿32. Ottawa, Canada: IDRC.
dc.relationSmith, L. B., (1953). Notes on Bromeliaceae, XLI. Phytologia, 5(4), 355-368.
dc.relationStill, C. J., Foster, P. N., & Schneider, S. H. (1999). Simulating the effects of climate change on tropical montane cloud forests. Nature, 398(6728), 608-610.
dc.relationThomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., ... & Williams, S. E. (2004). Extinction risk from climate change. Nature, 427(6970), 145-148.
dc.relationUrrea, V., Ochoa, A., & Mesa, O. (2019). Seasonality of rainfall in Colombia. Water Resources Research, 55(5), 4149-4162.
dc.relationVillacís-Pérez, E. (2011). Variación altitudinal en la diversidad y composición de la comunidad de invertebrados asociada a bromelias en un bosque nublado del noroccidente de Pichincha (Bachelor's thesis, Quito: USFQ, 2011).
dc.relationViscosi, V., & Cardini, A. (2011). Leaf morphology, taxonomy and geometric morphometrics: a simplified protocol for beginners. PloS one, 6(10), e25630.
dc.relationVuille, M., Francou, B., Wagnon, P., Juen, I., Kaser, G., Mark, B. G., & Bradley, R. S. (2008). Climate change and tropical Andean glaciers: Past, present and future. Earth-science reviews, 89(3-4), 79-96.
dc.relationWickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., ... & Yutani, H. Welcome to the tidyverse. J. Open Source Softw. 4 (43), 1686 (2019).
dc.relationWilson, A. M., & Jetz, W. (2016). Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLoS biology, 14(3), e1002415.
dc.relationWoda, C., Huber, A., & Dohrenbusch, A. (2006). Vegetación epifita y captación de neblina en bosques siempreverdes en la Cordillera Pelada, sur de Chile. Bosque (Valdivia), 27(3), 231-240.
dc.relationWoodward, F. I., & Kelly, C. K. (1995). The influence of CO2 concentration on stomatal density. New phytologist, 131(3), 311-327.
dc.relationZotz, G., & Andrade, J. L. (1998). Water relations of two co-occurring epiphytic bromeliads. Journal of plant physiology, 152(4-5), 545-554.
dc.relationZotz, G., & Bader, M. Y. (2009). Epiphytic plants in a changing world-global: change effects on vascular and non-vascular epiphytes. Progress in botany (pp. 147-170).
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titlePhenotypic variation of Guzmania triangularis functional traits along precipitation and elevation gradients in northern Colombian cloud forests
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución