dc.contributor | Oostra Van Noppen, Benjamín | |
dc.contributor | García Varela, José Alejandro | |
dc.contributor | Astronomy and Astrophysics | |
dc.creator | Fuentes Rico, Eric Fabrizio | |
dc.date.accessioned | 2022-08-16T12:43:55Z | |
dc.date.available | 2022-08-16T12:43:55Z | |
dc.date.created | 2022-08-16T12:43:55Z | |
dc.date.issued | 2022-08-12 | |
dc.identifier | http://hdl.handle.net/1992/59881 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.description.abstract | Although Red Clump (RC) stars have been increasingly used as standard candles to measure stellar extinctions, distances, chemistry and kinematics both in and out of the Milky Way due to the small variation within their properties, this ever growing interest and appreciation in RC methods seems to not have been followed by the development of easier ways to quickly identify RC stars, for the RC and a part of the Red Giant Branch (RGB) are superimposed in the Hertzsprung-Russell (HR) diagram and the only way to differentiate them has so far been by resorting to complicated chemical and asteroseismological methods. After APOKASC "a project devoted to asteroseismology" revealed an offset between the surface gravities determined with spectroscopy and those determined with asteroseismology, the idea that there could exist a missing spectroscopic variable that allows to distinguish between RC and RGB stars by spectroscopic methods alone soon came out and recent studies have found that such variable could be related to the CN-cycle of stars, being the CN I absorption spectral lines stronger in RC stars than in similar RGB stars. In this dissertation, that line of work is resumed by measuring the equivalent width (EW) of 9 absorption spectral lines (4 Fe I, 1 Ti I and 4 CN I lines) within the wavelength range [7400 Å, 7500 Å] for a sample of 31 stars within the RC's neighborhood in the HR diagram. Although the sample of stars used was too small to really "prove" something, no counterexample to the hypothesis could be found; at least at first glance, the results seem to indicate that the limit EWTi/EWCN = 2.5 is of great significance since all RGB stars but one fell above it and all RC stars fell below it, forming a remarkably small clump in the (Absolute visual magnitude, EWTi/EWCN) plane. Furthermore, it was found that adding the EWTi/EWCN dimension to the classical 2D HR diagram results in a "3D HR space" that seems to be able to differentiate the 2 evolutionary stages (RC and RGB) as distinct 3D clumps and also suggests that some of the stars whose evolutionary status could not be found in literature are actually carbon stars traveling up the Asymptotic Giant Branch (AGB), for they also manifest as a distinct 3D clump. In any case, however, the fact that the strength of the lines of the CN I molecule seems to be able to differentiate RC and RGB stars reveals a puzzling difference between their photosphere's C-content that does not find any explanation within classical low-mass stellar evolution theory. This phenomenon could be caused by some still-to-be-explained non-canonical convection mechanism related to the helium flash, but far more evidence is required to assert this with strong conviction. | |
dc.language | eng | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Física | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Departamento de Física | |
dc.relation | Hansen, C., Kawaler, S., & Trimble, V. 2004, Stellar interiors: physical principles, structure and evolution, (2nd ed.), Springer-Verlag, 340. | |
dc.relation | Bastien, F., Stassun, K., Basri, G., & Pepper, J. 2015, A granulation "flicker"-based measure of stellar surface gravity, The Astrophysical Journal Letters, 818, 43.
https://doi.org/10.3847/0004-637X/818/1/43 | |
dc.relation | Nataf, D., Udalski, A., Gould, A., Fouqué, P., & Stanek, K. 2010, The Split Red Clump of the Galactic Bulge from OGLE-III, The Astrophysical Journal Letters, 721, L28-L32. https://doi.org/10.1088/2041-8205/721/1/L28 | |
dc.relation | Ree, C., Yoon, S., Rey, S., & Lee, Y. 2002, Omega Centauri, A Unique Window into Astrophysics, (1st ed. Astronomical Society of the Pacific), 265, 101. | |
dc.relation | Masseron, T., & Hawkins, K. 2017, The spectroscopic indistinguishability of red giant
branch and red clump stars, Astronomy & Astrophysics, 597, L3. https://doi.org/
10.1051/0004-6361/201629938 | |
dc.relation | Powell, R. 2011, The Hertzsprung Russel Diagram, http://www.atlasoftheuniverse.com/hr.html | |
dc.relation | Oostra, B., & Vargas, P. 2021, The differential redshift of titanium lines in K stars, (under review). | |
dc.relation | Perryman, M. 2021, Hipparcos satellite: testing in the Large Solar Simulator, ES TEC, https://commons.wikimedia.org/wiki/File:Hipparcos-testing-estec.
jpg | |
dc.relation | University of Iowa. 2017, Imaging the Universe: Stellar Parallax, http://astro.
physics.uiowa.edu/ITU/glossary/stellar-parallax/ | |
dc.relation | Carroll, B. & Ostlie, D. 2017, An Introduction to Modern Astrophysics, (2nd ed.), Cambridge University Press. | |
dc.relation | Dintsios, N., & Artemi, S., & Polatoglou, H. 2018, Evaluating Stars Temperature Through the B-V Index Using a Virtual Real Experiment from Distance: A Case Sce nario for Secondary Education. International Journal of Online and Biomedical En gineering (iJOE), 14(01), pp. 162-178. https://doi.org/10.3991/ijoe.v14i01.
7842 | |
dc.relation | Zombeck, M. 1990, CHandbook of Space Astronomy and Astrophysics, (2nd ed.), Cambridge University Press, 105. | |
dc.relation | Girardi, L. 2016, Red Clump Stars, The Annual Review of Astronomy and Astro physics, 54, 95 - 133. https://doi.org/10.1146/annurev-astro-081915-023354 | |
dc.relation | van Leeuwen, F. 2007, Validation of the new Hipparcos reduction, Astronomy &
Astrophysics, 474, 2, 653-664. https://doi.org/10.1051/0004-6361:20078357 | |
dc.relation | Bagnulo, S., Jehin, E., Ledoux, C., Cabanac, R., Melo, C., Gilmozzi, R. & ESO Paranal Science Operations Team. 2003, The UVES Paranal Observatory Project: A Library of High- Resolution Spectra of Stars across the Hertzsprung-Russell Diagram, The Messenger, 114, 10-14. | |
dc.relation | Strassmeier, K., Ilyin, I., Järvinen, A., Weber, M., Woche, M., Barnes, S. I., Bauer, S.
-M., Beckert, E., Bittner, W., Bredthauer, R., Carroll, T. A., Denker, C., Dionies, F.,
DiVarano, I., Döscher, D., Fechner, T., Feuerstein, D., Granzer, T., Hahn, T., Har nisch, G., Hofmann, A., Lesser, M., Paschke, J., Pankratow, S., Plank, V., Plüschke, D., Popow, E. & Sablowski, D. 2015, PEPSI: The high-resolution échelle spectrograph
and polarimeter for the Large Binocular Telescope, Astronomische Nachrichten, 336,
4. https://doi.org/10.1002/asna.201512172 | |
dc.relation | Ochsenbein F. et. al. 2000, The VizieR database of astronomical catalogues, Astron omy & Astrophysics, 143, 23. https://doi.org/10.1051/aas:2000169. This research has made use of the VizieR catalogue access tool, CDS, Strasbourg,
France (DOI : 10.26093/cds/vizier). The original description of the VizieR service
was published in 2000, A&AS 143, 23. | |
dc.relation | Wenger, M., Ochsenbein, F., Egret, D., Dubois, P. Bonnarel, F., Borde, S., Genova,
F., Jasniewicz, G., Laloë, S., Lesteven, S. & Monier R. 2000, The SIMBAD astronomical database. The CDS reference database for astronomical objects, Astronomy
& Astrophysics, 143, 9-22. https://doi.org/10.1051/aas:2000332. This research has made use of the SIMBAD database, operated at CDS, Strasbourg,
France. | |
dc.relation | Ryabchikova, T., Piskunov, N., Kurucz, R., Stempels, H., Heiter, U., Pakhomov,
Yu. & Barklem, P. 2015, A major upgrade of the VALD database, The Royal Swedish
Academy of Sciences, 90, 5. https://doi.org/10.1088/0031-8949/90/5/054005. This work has made use of the VALD database, operated at Uppsala University, the
Institute of Astronomy RAS in Moscow, and the University of Vienna. | |
dc.relation | Alves, D. 2000, K-Band Calibration of the Red Clump Luminosity, The Astrophysical Journal, 539, 732. https://doi.org/10.1086/309278 | |
dc.relation | Brown, J. & Sneden, C. & Lambert, D. & Dutchover, E. 1989, A Search for Lithium-rich Giant Stars, The Astrophysical Journal Supplement Series, 71, 293. https:
//doi.org/10.1086/191375 | |
dc.relation | Ester, M. & Kriegel, H. & Sander, J. & Xu, X. 1996, A density-based algorithm for discovering clusters in large spatial databases with noise, AAAI Press, 226-231. | |
dc.relation | Laney, C. & Joner, M. v Pietrzyski, G. 2012 A new Large Magellanic Cloud K-band distance from precision measurements of nearby red clump stars, Monthly Notices of the Royal Astronomical Society, 419, 1637-1641. https://doi.org/10.1111/j.
1365-2966.2011.19826.x | |
dc.relation | Valentini, M. & Munari, U. 2010, A spectroscopic survey of faint, high-Galactic-latitude red clump stars. I. The high resolution sample, Astronomy & Astrophysics, 522, A79. https://doi.org/10.1051/0004-6361/201014870 | |
dc.relation | Gontcharov, G. 2008, Red giant clump in the Tycho-2 catalogue, Astronomy Letters, 34, 785-796. https://doi.org/10.1134/S1063773708110078 | |
dc.relation | Gontcharov, G. 2011, The Red Giant Branch in the Tycho-2 Catalogue, Astronomy Letters, 37, 707-710. https://doi.org/10.1134/S1063773711090040 | |
dc.relation | Abia, C., Palmerini, S., Busso, M. & Cristallo, S. 2012, Carbon and oxygen isotopic ratios in Arcturus and Aldebaran, Astronomy & Astrophysics, 548, 12. https://
doi.org/10.1051/0004-6361/201220148 | |
dc.relation | Rebull, L., Carlberg, J. & Gibbs, J. 2015, On infrared excesses associated with Li-rich K giants, The Astronomical Journal, 150, 123. https://doi.org/10.1088/
0004-6256/150/4/123 | |
dc.relation | Cardiel, N., Zamorano, J., Bará, S., Cabello, C. & Gallego, J. 2021, Synthetic RGB photometry of bright stars: definition of the standard photometric system and UCM
library of spectrophotometric spectra, Monthly Notices of the Royal Astronomical
Society, 504, 3730-3748. https://doi.org/10.1093/mnras/stab997 | |
dc.relation | Lagadec, E., Verhoelst, T., Mékarnia, D., Suárez, O., Bendjoya, P. & Szczerba, R. 2011, A mid-infrared imaging catalogue of post-asymptotic giant branch stars, Monthly Notices of the Royal Astronomical Society 417, 32-92. https://doi.org/
10.1111/j.1365-2966.2011.18557.x | |
dc.relation | Gray, D. & Kaur, T. 2019, A Recipe for Finding Stellar Radii, Temperatures, Surface Gravities, Metallicities, and Masses Using Spectral Lines, The Astrophysical Journal, 882, 148. https://doi.org/10.3847/1538-4357/ab2fce | |
dc.relation | Edvardsson, B. 1988, Spectroscopic surface gravities and chemical compositions for 8
nearby single sub-giants, Astronomy and Astrophysics, 190, 148-166. | |
dc.relation | Lee, B., Han, I., Park, M., Mkrtichian, D., Hatzes, A. & Kim, K. 2014, Planetary companions in K giants Cancri, Leonis, and Ursae Minoris, Astronomy & Astrophysics, 566, 7. https://doi.org/10.1051/0004-6361/201322608 | |
dc.relation | Massarotti, A., Latham, D., Stefanik, R. & Fogel, J. 2007, Rotational and radial velocities for a sample of 761 Hipparcos giants and the role of binarity, The Astronomical Journal, 135, 209. https://doi.org/10.1088/0004-6256/135/1/209 | |
dc.relation | Luck, R. 2015, Abundances in the local region. I, G and K giants, The Astronomical Journal, 150, 88. https://doi.org/10.1088/0004-6256/150/3/88 | |
dc.relation | Park, S., Kang, W., Lee, J. & Lee, S. 2013, Wilson-Bappu effect: extended to surface gravity, The Astronomical Journal, 146, 73. https://doi.org/10.1088/0004-6256/146/4/73 | |
dc.relation | Dominy, J. 1984, The chemical composition and evolutionary state of the early stars, Astrophysical Journal Supplement Series, 55, 27-43. | |
dc.relation | Guenther, D. 2000, Evolutionary Model and Oscillation Frequencies for Ursae
Majoris: A Comparison with Observations, The Astrophysical Journal, 530, L45.
https://doi.org/10.1086/312473 | |
dc.relation | Ramírez, I. & Allende, C. 2011, Fundamental parameters and chemical composition of Arcturus, The Astrophysical Journal, 743, 135. https://doi.org/10.1088/
0004-637X/743/2/135 | |
dc.relation | Farr, W., Pope, B., Davies, G., North, T., White, T., Barret, J., Miglio, A., Lund, M., Antoci, V. & Andersen, M. 2018, Aldebaran b's Temperate Past Uncovered in Planet Search Data, The Astrophysical Journal Letters, 865, L20. https://doi.org/10.3847/2041-8213/aadfde | |
dc.relation | Strassmeier, K., Ilyin, I. & Weber, M. 2018, Gaia benchmark stars and other M-K standards, Astronomy & Astrophysics, 612, A45. https://doi.org/10.1051/0004-6361/201731633 | |
dc.relation | Jofré, E., Petrucci, R., Saffe, C., Saker, L., Artur de la Villarmois, E., Chavero, C., Gómez, M. & Mauas P. 2015, Stellar parameters and chemical abundances of 223 evolved stars with and without planets, Astronomy & Astrophysics, 574, A50.
https://doi.org/10.1051/0004-6361/201424474 | |
dc.relation | Cruzalèbes, P., Jorissen, A., Rabbia, Y., Sacuto, S., Chiavassa, A., Pasquato, E., Plez, B., Eriksson, K., Spang, A. & Chesneau, O. 2013, Fundamental parameters of 16 late-type stars derived from their angular diameter measured with VLTI/AMBER, Monthly Notices of the Royal Astronomical Society, 434, 437-450. https://doi.
org/10.1093/mnras/stt1037 | |
dc.relation | Jones, K. & Robinson, R. 1992, Spectroscopic investigation of cool giants and the authenticity of their reported microwave emission, Monthly Notices of the Royal Astronomical Society, 256, 535-544. https://doi.org/10.1093/mnras/256.3.535 | |
dc.relation | McWilliam, A. 1990, High-Resolution Spectroscopic Survey of 671 GK Giants. I.
Stellar Atmosphere Parameters and Abundances, Astrophysical Journal Supplement,
74, 1075. https:/doi:10.1086/191527 | |
dc.relation | Tetzlaff, N., Neuhäuser, R. & Hohle, M. 2010, A catalogue of young runaway Hipparcos stars within 3 kpc from the Sun, Monthly Notices of the Royal Astronomical Society, 410, 190-200. https://doi.org/10.1111/j.1365-2966.2010.17434.x | |
dc.relation | Soubiran, C., Le Campion, J., Brouillet, N. & Chemin, L. 2016, The PASTEL catalogue: 2016 version, Astronomy & Astrophysics, 591, A118. https://doi.org/10.1051/0004-6361/201628497 | |
dc.relation | Anderson, E. & Francis, Ch. 2012, XHIP: An extended hipparcos compilation, Astronomy Letters, 38, 331-346. https://doi.org/10.1134/S1063773712050015 | |
dc.relation | Stock, S., Reffert, S. & Quirrenbach, A. 2018, VizieR Online Data Catalog: Stellar parameters of 372 giant stars, VizieR Online Data Catalog. https://ui.adsabs.harvard.edu/abs/2018yCat..36160033S | |
dc.rights | Atribución 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Spectroscopic differentiation of stars within the Red Clump | |
dc.type | Trabajo de grado - Pregrado | |