dc.contributorOostra Van Noppen, Benjamín
dc.contributorGarcía Varela, José Alejandro
dc.contributorAstronomy and Astrophysics
dc.creatorFuentes Rico, Eric Fabrizio
dc.date.accessioned2022-08-16T12:43:55Z
dc.date.available2022-08-16T12:43:55Z
dc.date.created2022-08-16T12:43:55Z
dc.date.issued2022-08-12
dc.identifierhttp://hdl.handle.net/1992/59881
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.description.abstractAlthough Red Clump (RC) stars have been increasingly used as standard candles to measure stellar extinctions, distances, chemistry and kinematics both in and out of the Milky Way due to the small variation within their properties, this ever growing interest and appreciation in RC methods seems to not have been followed by the development of easier ways to quickly identify RC stars, for the RC and a part of the Red Giant Branch (RGB) are superimposed in the Hertzsprung-Russell (HR) diagram and the only way to differentiate them has so far been by resorting to complicated chemical and asteroseismological methods. After APOKASC "a project devoted to asteroseismology" revealed an offset between the surface gravities determined with spectroscopy and those determined with asteroseismology, the idea that there could exist a missing spectroscopic variable that allows to distinguish between RC and RGB stars by spectroscopic methods alone soon came out and recent studies have found that such variable could be related to the CN-cycle of stars, being the CN I absorption spectral lines stronger in RC stars than in similar RGB stars. In this dissertation, that line of work is resumed by measuring the equivalent width (EW) of 9 absorption spectral lines (4 Fe I, 1 Ti I and 4 CN I lines) within the wavelength range [7400 Å, 7500 Å] for a sample of 31 stars within the RC's neighborhood in the HR diagram. Although the sample of stars used was too small to really "prove" something, no counterexample to the hypothesis could be found; at least at first glance, the results seem to indicate that the limit EWTi/EWCN = 2.5 is of great significance since all RGB stars but one fell above it and all RC stars fell below it, forming a remarkably small clump in the (Absolute visual magnitude, EWTi/EWCN) plane. Furthermore, it was found that adding the EWTi/EWCN dimension to the classical 2D HR diagram results in a "3D HR space" that seems to be able to differentiate the 2 evolutionary stages (RC and RGB) as distinct 3D clumps and also suggests that some of the stars whose evolutionary status could not be found in literature are actually carbon stars traveling up the Asymptotic Giant Branch (AGB), for they also manifest as a distinct 3D clump. In any case, however, the fact that the strength of the lines of the CN I molecule seems to be able to differentiate RC and RGB stars reveals a puzzling difference between their photosphere's C-content that does not find any explanation within classical low-mass stellar evolution theory. This phenomenon could be caused by some still-to-be-explained non-canonical convection mechanism related to the helium flash, but far more evidence is required to assert this with strong conviction.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherFísica
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Física
dc.relationHansen, C., Kawaler, S., & Trimble, V. 2004, Stellar interiors: physical principles, structure and evolution, (2nd ed.), Springer-Verlag, 340.
dc.relationBastien, F., Stassun, K., Basri, G., & Pepper, J. 2015, A granulation "flicker"-based measure of stellar surface gravity, The Astrophysical Journal Letters, 818, 43. https://doi.org/10.3847/0004-637X/818/1/43
dc.relationNataf, D., Udalski, A., Gould, A., Fouqué, P., & Stanek, K. 2010, The Split Red Clump of the Galactic Bulge from OGLE-III, The Astrophysical Journal Letters, 721, L28-L32. https://doi.org/10.1088/2041-8205/721/1/L28
dc.relationRee, C., Yoon, S., Rey, S., & Lee, Y. 2002, Omega Centauri, A Unique Window into Astrophysics, (1st ed. Astronomical Society of the Pacific), 265, 101.
dc.relationMasseron, T., & Hawkins, K. 2017, The spectroscopic indistinguishability of red giant branch and red clump stars, Astronomy & Astrophysics, 597, L3. https://doi.org/ 10.1051/0004-6361/201629938
dc.relationPowell, R. 2011, The Hertzsprung Russel Diagram, http://www.atlasoftheuniverse.com/hr.html
dc.relationOostra, B., & Vargas, P. 2021, The differential redshift of titanium lines in K stars, (under review).
dc.relationPerryman, M. 2021, Hipparcos satellite: testing in the Large Solar Simulator, ES TEC, https://commons.wikimedia.org/wiki/File:Hipparcos-testing-estec. jpg
dc.relationUniversity of Iowa. 2017, Imaging the Universe: Stellar Parallax, http://astro. physics.uiowa.edu/ITU/glossary/stellar-parallax/
dc.relationCarroll, B. & Ostlie, D. 2017, An Introduction to Modern Astrophysics, (2nd ed.), Cambridge University Press.
dc.relationDintsios, N., & Artemi, S., & Polatoglou, H. 2018, Evaluating Stars Temperature Through the B-V Index Using a Virtual Real Experiment from Distance: A Case Sce nario for Secondary Education. International Journal of Online and Biomedical En gineering (iJOE), 14(01), pp. 162-178. https://doi.org/10.3991/ijoe.v14i01. 7842
dc.relationZombeck, M. 1990, CHandbook of Space Astronomy and Astrophysics, (2nd ed.), Cambridge University Press, 105.
dc.relationGirardi, L. 2016, Red Clump Stars, The Annual Review of Astronomy and Astro physics, 54, 95 - 133. https://doi.org/10.1146/annurev-astro-081915-023354
dc.relationvan Leeuwen, F. 2007, Validation of the new Hipparcos reduction, Astronomy & Astrophysics, 474, 2, 653-664. https://doi.org/10.1051/0004-6361:20078357
dc.relationBagnulo, S., Jehin, E., Ledoux, C., Cabanac, R., Melo, C., Gilmozzi, R. & ESO Paranal Science Operations Team. 2003, The UVES Paranal Observatory Project: A Library of High- Resolution Spectra of Stars across the Hertzsprung-Russell Diagram, The Messenger, 114, 10-14.
dc.relationStrassmeier, K., Ilyin, I., Järvinen, A., Weber, M., Woche, M., Barnes, S. I., Bauer, S. -M., Beckert, E., Bittner, W., Bredthauer, R., Carroll, T. A., Denker, C., Dionies, F., DiVarano, I., Döscher, D., Fechner, T., Feuerstein, D., Granzer, T., Hahn, T., Har nisch, G., Hofmann, A., Lesser, M., Paschke, J., Pankratow, S., Plank, V., Plüschke, D., Popow, E. & Sablowski, D. 2015, PEPSI: The high-resolution échelle spectrograph and polarimeter for the Large Binocular Telescope, Astronomische Nachrichten, 336, 4. https://doi.org/10.1002/asna.201512172
dc.relationOchsenbein F. et. al. 2000, The VizieR database of astronomical catalogues, Astron omy & Astrophysics, 143, 23. https://doi.org/10.1051/aas:2000169. This research has made use of the VizieR catalogue access tool, CDS, Strasbourg, France (DOI : 10.26093/cds/vizier). The original description of the VizieR service was published in 2000, A&AS 143, 23.
dc.relationWenger, M., Ochsenbein, F., Egret, D., Dubois, P. Bonnarel, F., Borde, S., Genova, F., Jasniewicz, G., Laloë, S., Lesteven, S. & Monier R. 2000, The SIMBAD astronomical database. The CDS reference database for astronomical objects, Astronomy & Astrophysics, 143, 9-22. https://doi.org/10.1051/aas:2000332. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France.
dc.relationRyabchikova, T., Piskunov, N., Kurucz, R., Stempels, H., Heiter, U., Pakhomov, Yu. & Barklem, P. 2015, A major upgrade of the VALD database, The Royal Swedish Academy of Sciences, 90, 5. https://doi.org/10.1088/0031-8949/90/5/054005. This work has made use of the VALD database, operated at Uppsala University, the Institute of Astronomy RAS in Moscow, and the University of Vienna.
dc.relationAlves, D. 2000, K-Band Calibration of the Red Clump Luminosity, The Astrophysical Journal, 539, 732. https://doi.org/10.1086/309278
dc.relationBrown, J. & Sneden, C. & Lambert, D. & Dutchover, E. 1989, A Search for Lithium-rich Giant Stars, The Astrophysical Journal Supplement Series, 71, 293. https: //doi.org/10.1086/191375
dc.relationEster, M. & Kriegel, H. & Sander, J. & Xu, X. 1996, A density-based algorithm for discovering clusters in large spatial databases with noise, AAAI Press, 226-231.
dc.relationLaney, C. & Joner, M. v Pietrzyski, G. 2012 A new Large Magellanic Cloud K-band distance from precision measurements of nearby red clump stars, Monthly Notices of the Royal Astronomical Society, 419, 1637-1641. https://doi.org/10.1111/j. 1365-2966.2011.19826.x
dc.relationValentini, M. & Munari, U. 2010, A spectroscopic survey of faint, high-Galactic-latitude red clump stars. I. The high resolution sample, Astronomy & Astrophysics, 522, A79. https://doi.org/10.1051/0004-6361/201014870
dc.relationGontcharov, G. 2008, Red giant clump in the Tycho-2 catalogue, Astronomy Letters, 34, 785-796. https://doi.org/10.1134/S1063773708110078
dc.relationGontcharov, G. 2011, The Red Giant Branch in the Tycho-2 Catalogue, Astronomy Letters, 37, 707-710. https://doi.org/10.1134/S1063773711090040
dc.relationAbia, C., Palmerini, S., Busso, M. & Cristallo, S. 2012, Carbon and oxygen isotopic ratios in Arcturus and Aldebaran, Astronomy & Astrophysics, 548, 12. https:// doi.org/10.1051/0004-6361/201220148
dc.relationRebull, L., Carlberg, J. & Gibbs, J. 2015, On infrared excesses associated with Li-rich K giants, The Astronomical Journal, 150, 123. https://doi.org/10.1088/ 0004-6256/150/4/123
dc.relationCardiel, N., Zamorano, J., Bará, S., Cabello, C. & Gallego, J. 2021, Synthetic RGB photometry of bright stars: definition of the standard photometric system and UCM library of spectrophotometric spectra, Monthly Notices of the Royal Astronomical Society, 504, 3730-3748. https://doi.org/10.1093/mnras/stab997
dc.relationLagadec, E., Verhoelst, T., Mékarnia, D., Suárez, O., Bendjoya, P. & Szczerba, R. 2011, A mid-infrared imaging catalogue of post-asymptotic giant branch stars, Monthly Notices of the Royal Astronomical Society 417, 32-92. https://doi.org/ 10.1111/j.1365-2966.2011.18557.x
dc.relationGray, D. & Kaur, T. 2019, A Recipe for Finding Stellar Radii, Temperatures, Surface Gravities, Metallicities, and Masses Using Spectral Lines, The Astrophysical Journal, 882, 148. https://doi.org/10.3847/1538-4357/ab2fce
dc.relationEdvardsson, B. 1988, Spectroscopic surface gravities and chemical compositions for 8 nearby single sub-giants, Astronomy and Astrophysics, 190, 148-166.
dc.relationLee, B., Han, I., Park, M., Mkrtichian, D., Hatzes, A. & Kim, K. 2014, Planetary companions in K giants Cancri, Leonis, and Ursae Minoris, Astronomy & Astrophysics, 566, 7. https://doi.org/10.1051/0004-6361/201322608
dc.relationMassarotti, A., Latham, D., Stefanik, R. & Fogel, J. 2007, Rotational and radial velocities for a sample of 761 Hipparcos giants and the role of binarity, The Astronomical Journal, 135, 209. https://doi.org/10.1088/0004-6256/135/1/209
dc.relationLuck, R. 2015, Abundances in the local region. I, G and K giants, The Astronomical Journal, 150, 88. https://doi.org/10.1088/0004-6256/150/3/88
dc.relationPark, S., Kang, W., Lee, J. & Lee, S. 2013, Wilson-Bappu effect: extended to surface gravity, The Astronomical Journal, 146, 73. https://doi.org/10.1088/0004-6256/146/4/73
dc.relationDominy, J. 1984, The chemical composition and evolutionary state of the early stars, Astrophysical Journal Supplement Series, 55, 27-43.
dc.relationGuenther, D. 2000, Evolutionary Model and Oscillation Frequencies for Ursae Majoris: A Comparison with Observations, The Astrophysical Journal, 530, L45. https://doi.org/10.1086/312473
dc.relationRamírez, I. & Allende, C. 2011, Fundamental parameters and chemical composition of Arcturus, The Astrophysical Journal, 743, 135. https://doi.org/10.1088/ 0004-637X/743/2/135
dc.relationFarr, W., Pope, B., Davies, G., North, T., White, T., Barret, J., Miglio, A., Lund, M., Antoci, V. & Andersen, M. 2018, Aldebaran b's Temperate Past Uncovered in Planet Search Data, The Astrophysical Journal Letters, 865, L20. https://doi.org/10.3847/2041-8213/aadfde
dc.relationStrassmeier, K., Ilyin, I. & Weber, M. 2018, Gaia benchmark stars and other M-K standards, Astronomy & Astrophysics, 612, A45. https://doi.org/10.1051/0004-6361/201731633
dc.relationJofré, E., Petrucci, R., Saffe, C., Saker, L., Artur de la Villarmois, E., Chavero, C., Gómez, M. & Mauas P. 2015, Stellar parameters and chemical abundances of 223 evolved stars with and without planets, Astronomy & Astrophysics, 574, A50. https://doi.org/10.1051/0004-6361/201424474
dc.relationCruzalèbes, P., Jorissen, A., Rabbia, Y., Sacuto, S., Chiavassa, A., Pasquato, E., Plez, B., Eriksson, K., Spang, A. & Chesneau, O. 2013, Fundamental parameters of 16 late-type stars derived from their angular diameter measured with VLTI/AMBER, Monthly Notices of the Royal Astronomical Society, 434, 437-450. https://doi. org/10.1093/mnras/stt1037
dc.relationJones, K. & Robinson, R. 1992, Spectroscopic investigation of cool giants and the authenticity of their reported microwave emission, Monthly Notices of the Royal Astronomical Society, 256, 535-544. https://doi.org/10.1093/mnras/256.3.535
dc.relationMcWilliam, A. 1990, High-Resolution Spectroscopic Survey of 671 GK Giants. I. Stellar Atmosphere Parameters and Abundances, Astrophysical Journal Supplement, 74, 1075. https:/doi:10.1086/191527
dc.relationTetzlaff, N., Neuhäuser, R. & Hohle, M. 2010, A catalogue of young runaway Hipparcos stars within 3 kpc from the Sun, Monthly Notices of the Royal Astronomical Society, 410, 190-200. https://doi.org/10.1111/j.1365-2966.2010.17434.x
dc.relationSoubiran, C., Le Campion, J., Brouillet, N. & Chemin, L. 2016, The PASTEL catalogue: 2016 version, Astronomy & Astrophysics, 591, A118. https://doi.org/10.1051/0004-6361/201628497
dc.relationAnderson, E. & Francis, Ch. 2012, XHIP: An extended hipparcos compilation, Astronomy Letters, 38, 331-346. https://doi.org/10.1134/S1063773712050015
dc.relationStock, S., Reffert, S. & Quirrenbach, A. 2018, VizieR Online Data Catalog: Stellar parameters of 372 giant stars, VizieR Online Data Catalog. https://ui.adsabs.harvard.edu/abs/2018yCat..36160033S
dc.rightsAtribución 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleSpectroscopic differentiation of stars within the Red Clump
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución