dc.contributor | Muñoz Camargo, Carolina | |
dc.contributor | Cabrera Pérez, Rodrigo | |
dc.contributor | Bloch Morel, Natasha Ivonne | |
dc.contributor | Reyes Barrios, Luis Humberto | |
dc.contributor | Grupo de Investigación Ingeniería Celular y Nanobiomateriales - GIINIB | |
dc.creator | Ellis-Aguilar, Laura Daniela | |
dc.date.accessioned | 2024-08-08 | |
dc.date.available | 2024-08-08 | |
dc.date.created | 2024-08-08 | |
dc.date.issued | 2022-01-31 | |
dc.identifier | http://hdl.handle.net/1992/54468 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.description.abstract | Since it was first described, the CRISPR/Cas9 technology has opened new possibilities in the molecular biology fields. CRISPR/Cas9 has become one of the favorite tools for researchers from cell culture improvement to design of therapies for rare diseases. However, its clinical application has been hindered by the dearth of safe and efficient delivery systems. Here, we develop and characterized a magnetite-based nanoplatform to potentially deliver, both recombinant Cas9 and single guide RNA (sgRNA) targeting a pathogenic COL3A1 mutation in a cell culture model of hereditary Thoracic Aortic Aneurism. Specifically, we designed and synthesized several sgRNAs to test their activity through an allele specific DNA digestion assay. For this, we amplified the affected region using genomic DNA from a patient carrying the mutation and evaluated the cleavage efficiency of different Cas9-sgRNA ribonucleoproteins. Once the optimal conditions were obtained, we carried out DiGenome-Seq analysis to identify potential off-target effects. In parallel, we synthesized Magnetite Nanoparticles (MNPs), functionalized the particles by adding a polymer spacer (polyethylene glycol PEG) and conjugated the cell-penetrating peptide (CPP) Buforin II (BUFII) for membrane translocation alongside recombinant Cas9. We successfully characterized the MNP-PEG-BUFII-Cas9 conjugates by transmission electron microscopy (TEM) and dynamic light scattering (DLS), finding an average particle size of 15 nm and a hydrodynamic diameter from 120 to 250 nm. Fourier transform infrared spectroscopy (FTIR) lead us to corroborate correct functionalization in each step and find N-H stretch peaks at 3180 cm ¹ and 3500 cm ¹ which corresponded to the Cas9. And thermogravimetric analysis (TGA) displayed rising weight losses (6.97%, 7.77%, 10.41%) in each step of the synthesis. We also conducted a biocompatibility battery test that includes lactate dehydrogenase (LDH) cytotoxicity assay, platelet aggregation, hemolytic activity, and the Ames test for mutagenicity (Salmonella Tiphimurium TA98 strain). We demonstrated in vitro biocompatibility and highlight a platelet aggregation behavior (p > 0.001) of MNP-PEG-BUFII-Cas9. Finally, we performed a proof-of-principle of our MNP-PEG-BUFII-Cas9 nanoplatform, evaluating cell (HDFa and HaCat) internalization and endosomal escape of the MNP-PEG-BUFII-Cas9 without the sgRNA by confocal microscope image analysis. Overall, here we demonstrate the efficacy of MNP-PEG-BUFII-Cas9 nanoplatform as safe and promising non-viral delivery vehicles for CRISPR/Cas9 localized gene editing attempting to treat heterozygous mutations. | |
dc.language | eng | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Maestría en Ingeniería Biomédica | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Departamento de Ingeniería Biomédica | |
dc.relation | L. ME and D. HC, ¿Lessons on the pathogenesis of aneurysm from heritable conditions,¿ Nature, vol. 473, no. 7347, pp. 308¿316, May 2011, doi: 10.1038/NATURE10145 | |
dc.relation | R. VS, O. JK, S. TM, and E. KA, ¿Acute aortic syndromes and thoracic aortic aneurysm,¿ Mayo Clinic proceedings, vol. 84, no. 5, pp. 465¿481, May 2009, doi: 10.1016/S0025-6196(11)60566-1 | |
dc.relation | A. G et al., ¿Familial thoracic aortic aneurysms and dissections--incidence, modes of inheritance, and phenotypic patterns,¿ The Annals of thoracic surgery, vol. 82, no. 4, pp. 1400¿1405, Oct. 2006, doi: 10.1016/J.ATHORACSUR.2006.04.098 | |
dc.relation | E. M. Isselbacher, C. L. L. Cardenas, and M. E. Lindsay, ¿Hereditary Influence in Thoracic Aortic Aneurysm and Dissection,¿ Circulation, vol. 133, no. 24, pp. 2516¿2528, Jun. 2016, doi: 10.1161/CIRCULATIONAHA.116.009762 | |
dc.relation | E. M. Isselbacher, C. L. Lino Cardenas, and M. E. Lindsay, ¿Hereditary Influence in Thoracic Aortic Aneurysm and Dissection,¿ Circulation, vol. 133, no. 24, pp. 2516¿2528, Jun. 2016, doi: 10.1161/CIRCULATIONAHA.116.009762. | |
dc.relation | H. Kuivaniemi and G. Tromp, ¿Type III collagen (COL3A1): Gene and protein structure, tissue distribution, and associated diseases,¿ Gene, vol. 707, p. 151, Jul. 2019, doi: 10.1016/J.GENE.2019.05.003. | |
dc.relation | D. B. T. Cox, R. J. Platt, and F. Zhang, ¿Therapeutic genome editing: prospects and challenges,¿ Nature medicine, vol. 21, no. 2, pp. 121¿131, 2015, doi: 10.1038/NM.3793. | |
dc.relation | H. X. Wang et al., ¿CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy: Challenges and Opportunities for Nonviral Delivery,¿ Chemical reviews, vol. 117, no. 15, pp. 9874¿9906, Aug. 2017, doi: 10.1021/ACS.CHEMREV.6B00799 | |
dc.relation | K. S. Makarova and E. v. Koonin, ¿Annotation and Classification of CRISPR-Cas Systems,¿ Methods in molecular biology (Clifton, N.J.), vol. 1311, pp. 47¿75, 2015, doi: 10.1007/978-1-4939-2687-9_4. | |
dc.relation | M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna, and E. Charpentier, ¿A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity,¿ Science (New York, N.Y.), vol. 337, no. 6096, pp. 816¿821, Aug. 2012, doi: 10.1126/SCIENCE.1225829. | |
dc.relation | V. Pattanayak, S. Lin, J. P. Guilinger, E. Ma, J. A. Doudna, and D. R. Liu, ¿High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity,¿ Nature Biotechnology, vol. 31, no. 9, pp. 839¿843, Sep. 2013, doi: 10.1038/nbt.2673. | |
dc.relation | L. CA, H. JC, C. JP, and T. JA, ¿Delivering CRISPR: a review of the challenges and approaches,¿ Drug delivery, vol. 25, no. 1, pp. 1234¿1257, 2018, doi: 10.1080/10717544.2018.1474964. | |
dc.relation | C. T. Charlesworth et al., ¿Identification of Pre-Existing Adaptive Immunity to Cas9 Proteins in Humans,¿ bioRxiv, p. 243345, Jan. 2018, doi: 10.1101/243345. | |
dc.relation | E. Haapaniemi, S. Botla, J. Persson, B. Schmierer, and J. Taipale, ¿CRISPR¿Cas9 genome editing induces a p53-mediated DNA damage response,¿ Nature Medicine 2018 24:7, vol. 24, no. 7, pp. 927¿930, Jun. 2018, doi: 10.1038/s41591-018-0049-z. | |
dc.relation | S. Kim, D. Kim, S. W. Cho, J. Kim, and J. S. Kim, ¿Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins,¿ Genome Research, vol. 24, no. 6, pp. 1012¿1019, Jun. 2014, doi: 10.1101/GR.171322.113. | |
dc.relation | W. H, J. H, and L. X, ¿Drug Delivery Approaches in Addressing Clinical Pharmacology-Related Issues: Opportunities and Challenges,¿ The AAPS journal, vol. 17, no. 6, pp. 1327¿1340, Nov. 2015, doi: 10.1208/S12248-015-9814-9. | |
dc.relation | L. Wang, W. Zheng, S. Liu, B. Li, and X. Jiang, ¿Delivery of CRISPR/Cas9 by Novel Strategies for Gene Therapy,¿ ChemBioChem, vol. 20, no. 5. 2019. doi: 10.1002/cbic.201800629. | |
dc.relation | J. Perez, J. Cifuentes, M. Cuellar, A. Suarez-Arnedo, J. C. Cruz, and C. Muñoz-Camargo, ¿Cell-Penetrating And Antibacterial BUF-II Nanobioconjugates: Enhanced Potency Via Immobilization On Polyetheramine-Modified Magnetite Nanoparticles,¿ International Journal of Nanomedicine, vol. 14, p. 8483, 2019, doi: 10.2147/IJN.S224286. | |
dc.relation | C. M. Ramírez-acosta et al., ¿PH-Responsive, Cell-Penetrating, Core/Shell Magnetite/Silver Nanoparticles for the Delivery of Plasmids: Preparation, Characterization, and Preliminary In Vitro Evaluation,¿ Pharmaceutics 2020, Vol. 12, Page 561, vol. 12, no. 6, p. 561, Jun. 2020, doi: 10.3390/PHARMACEUTICS12060561. | |
dc.relation | N. Lopez-Barbosa et al., ¿Magnetite-OmpA Nanobioconjugates as Cell-Penetrating Vehicles with Endosomal Escape Abilities,¿ ACS Biomaterials Science and Engineering, vol. 6, no. 1, pp. 415¿424, Jan. 2020, doi: 10.1021/ACSBIOMATERIALS.9B01214/SUPPL_FILE/AB9B01214_SI_001.PDF. | |
dc.relation | S. Deshayes, M. C. Morris, G. Divita, and F. Heitz, ¿Cell-penetrating peptides: tools for intracellular delivery of therapeutics,¿ Cellular and molecular life sciences¿: CMLS, vol. 62, no. 16, pp. 1839¿1849, Aug. 2005, doi: 10.1007/S00018-005-5109-0. | |
dc.relation | J. D. Ramsey and N. H. Flynn, ¿Cell-penetrating peptides transport therapeutics into cells,¿ Pharmacology & therapeutics, vol. 154, pp. 78¿86, Oct. 2015, doi: 10.1016/J.PHARMTHERA.2015.07.003. | |
dc.relation | M. T. P. Favaro et al., ¿Development of a non-viral gene delivery vector based on the dynein light chain Rp3 and the TAT peptide,¿ Journal of biotechnology, vol. 173, no. 1, pp. 10¿18, Mar. 2014, doi: 10.1016/J.JBIOTEC.2014.01.001. | |
dc.relation | S. Yamano et al., ¿Efficient in vivo gene delivery using modified Tat peptide with cationic lipids,¿ Biotechnology letters, vol. 36, no. 7, pp. 1447¿1452, 2014, doi: 10.1007/S10529-014-1497-2. | |
dc.relation | S. Yamano et al., ¿Long-term efficient gene delivery using polyethylenimine with modified Tat peptide,¿ Biomaterials, vol. 35, no. 5, pp. 1705¿1715, Feb. 2014, doi: 10.1016/J.BIOMATERIALS.2013.11.012. | |
dc.relation | P. CB, Y. KS, M. K, K. MS, and K. SC, ¿Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II,¿ Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 15, pp. 8245¿8250, Jul. 2000, doi: 10.1073/PNAS.150518097. | |
dc.relation | J. H. Cho, B. H. Sung, and S. C. Kim, ¿Buforins: Histone H2A-derived antimicrobial peptides from toad stomach,¿ Biochimica et Biophysica Acta (BBA) - Biomembranes, vol. 1788, no. 8, pp. 1564¿1569, Aug. 2009, doi: 10.1016/J.BBAMEM.2008.10.025. | |
dc.relation | M. Ntwasa, ¿Cationic Peptide Interactions with Biological Macromolecules,¿ Binding Protein, Sep. 2012, doi: 10.5772/48492. | |
dc.relation | M. Cuellar et al., ¿Novel BUF2-magnetite nanobioconjugates with cell-penetrating abilities,¿ International Journal of Nanomedicine, vol. 13, pp. 8087¿8094, 2018, doi: 10.2147/IJN.S188074. | |
dc.relation | M. Cuellar et al., ¿Novel BUF2-magnetite nanobioconjugates with cell-penetrating abilities,¿ International Journal of Nanomedicine, vol. 13, pp. 8087¿8094, Nov. 2018, doi: 10.2147/IJN.S188074. | |
dc.relation | ¿Practice Guidelines.¿ https://www.acmg.net/ACMG/Medical-Genetics-Practice-Resources/Practice-Guidelines.aspx (accessed Dec. 04, 2021). | |
dc.relation | S. Bae, J. Park, and J. S. Kim, ¿Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases,¿ Bioinformatics (Oxford, England), vol. 30, no. 10, pp. 1473¿1475, May 2014, doi: 10.1093/BIOINFORMATICS/BTU048. | |
dc.relation | H. Li and R. Durbin, ¿Fast and accurate long-read alignment with Burrows-Wheeler transform,¿ Bioinformatics (Oxford, England), vol. 26, no. 5, pp. 589¿595, Jan. 2010, doi: 10.1093/BIOINFORMATICS/BTP698. | |
dc.relation | H. Li et al., ¿The Sequence Alignment/Map format and SAMtools,¿ Bioinformatics, vol. 25, no. 16, pp. 2078¿2079, Aug. 2009, doi: 10.1093/BIOINFORMATICS/BTP352. | |
dc.relation | D. Kim et al., ¿Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells,¿ Nature methods, vol. 12, no. 3, pp. 237¿243, Feb. 2015, doi: 10.1038/NMETH.3284. | |
dc.relation | J. Perez, J. Cifuentes, M. Cuellar, A. Suarez-Arnedo, J. C. Cruz, and C. Muñoz-Camargo, ¿Cell-Penetrating And Antibacterial BUF-II Nanobioconjugates: Enhanced Potency Via Immobilization On Polyetheramine-Modified Magnetite Nanoparticles,¿ International Journal of Nanomedicine, vol. 14, p. 8483, 2019, doi: 10.2147/IJN.S224286. | |
dc.relation | K. Mortelmans and E. Zeiger, ¿The Ames Salmonella/microsome mutagenicity assay,¿ Mutation research, vol. 455, no. 1¿2, pp. 29¿60, Nov. 2000, doi: 10.1016/S0027-5107(00)00064-6. | |
dc.relation | J. Jurado, E. Alejandre-durán, and C. Pueyo, ¿Genetic differences between the standard Ames tester strains TA100 and TA98,¿ Mutagenesis, vol. 8, no. 6, pp. 527¿532, Nov. 1993, doi: 10.1093/MUTAGE/8.6.527. | |
dc.relation | H. Sui, K. Kawakami, N. Sakurai, T. Hara, and T. Nohmi, ¿Improvement and Evaluation of High Throughput Fluctuation Ames Test Using 384-well Plate with Salmonella typhimurium TA100 and TA98,¿ Genes and Environment, vol. 31, no. 2, pp. 47¿55, 2009. | |
dc.relation | V. K. Varadan, Linfeng. Chen, and Jining. Xie, ¿Nanomedicine¿: design and applications of magnetic nanomaterials, nanosensors and nanosystems,¿ p. 467, 2008. | |
dc.relation | B. J. Berne and R. Pecora, ¿Dynamic light scattering¿: with applications to chemistry, biology, and physics,¿ p. 376, 2000. | |
dc.relation | B. Feng et al., ¿Synthesis of Fe3O4/APTES/PEG diacid functionalized magnetic nanoparticles for MR imaging,¿ Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 328, no. 1¿3, pp. 52¿59, Oct. 2008, doi: 10.1016/J.COLSURFA.2008.06.024. | |
dc.relation | A. Atkins et al., ¿Off-Target Analysis in Gene Editing and Applications for Clinical Translation of CRISPR/Cas9 in HIV-1 Therapy,¿ Frontiers in Genome Editing, vol. 0, p. 16, Aug. 2021, doi: 10.3389/FGEED.2021.673022. | |
dc.relation | ¿ISO - ISO 10993-1:2018 - Biological evaluation of medical devices ¿ Part 1: Evaluation and testing within a risk management process.¿ https://www.iso.org/standard/68936.html (accessed Nov. 02, 2021). | |
dc.relation | M. Hoeksema, M. van Eijk, H. P. Haagsman, and K. L. Hartshorn, ¿Histones as mediators of host defense, inflammation and thrombosis,¿ http://dx.doi.org/10.2217/fmb.15.151, vol. 11, no. 3, pp. 441¿453, Mar. 2016, doi: 10.2217/FMB.15.151. | |
dc.relation | Y. Liu et al., ¿Genotoxicity assessment of magnetic iron oxide nanoparticles with different particle sizes and surface coatings,¿ Nanot, vol. 25, no. 42, p. 425101, Oct. 2014, doi: 10.1088/0957-4484/25/42/425101. | |
dc.relation | D. Aky¿l, Y. Eren, M. Konuk, A. Tepekozcan, and E. Sa¿lam, ¿Determination of mutagenicity and genotoxicity of indium tin oxide nanoparticles using the Ames test and micronucleus assay:,¿ http://dx.doi.org/10.1177/0748233715579804, vol. 32, no. 9, pp. 1720¿1728, Apr. 2015, doi: 10.1177/0748233715579804. | |
dc.relation | ¿Potential toxic effects of iron oxide nanoparticles in in vivo and in vitro experiments | Enhanced Reader.¿ | |
dc.relation | D. M. Maron and B. N. Ames, ¿Revised methods for the Salmonella mutagenicity test,¿ Mutation research, vol. 113, no. 3¿4, pp. 173¿215, 1983, doi: 10.1016/0165-1161(83)90010-9. | |
dc.relation | ¿In vitro genotoxicity testing strategy for nanomaterials and the adaptation of current OECD guidelines | Elsevier Enhanced Reader.¿ https://reader.elsevier.com/reader/sd/pii/S1383571811002786?token=F23F9DD4D2FD7812F59DB687C4627945302D3E44F4C42AB53560D489CF7D5899537F50BE8B6D71EA8B9C3ADC5971E14F&originRegion=us-east-1&originCreation=20211103110405 (accessed Nov. 02, 2021). | |
dc.relation | V. Valdiglesias et al., ¿Effects of iron oxide nanoparticles: Cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity,¿ Environmental and Molecular Mutagenesis, vol. 56, no. 2, pp. 125¿148, Mar. 2015, doi: 10.1002/EM.21909/FORMAT/PDF. | |
dc.relation | ¿. Y. Kaygisiz and I. H. Ci¿erci, ¿Genotoxic evaluation of different sizes of iron oxide nanoparticles and ionic form by SMART, Allium and comet assay,¿ Toxicology and industrial health, vol. 33, no. 10, pp. 802¿809, Oct. 2017, doi: 10.1177/0748233717722907. | |
dc.relation | E. Koren and V. P. Torchilin, ¿Cell-penetrating peptides: breaking through to the other side,¿ Trends in Molecular Medicine, vol. 18, no. 7, pp. 385¿393, Jul. 2012, doi: 10.1016/J.MOLMED.2012.04.012. | |
dc.relation | Z. Zhang, X. Lin, and N. Gu, ¿Effects of temperature and PEG grafting density on the translocation of PEGylated nanoparticles across asymmetric lipid membrane,¿ Colloids and Surfaces B: Biointerfaces, vol. 160, 2017, doi: 10.1016/j.colsurfb.2017.09.013. | |
dc.relation | R. N. Majzoub, C. L. Chan, K. K. Ewert, B. F. B. Silva, K. S. Liang, and C. R. Safinya, ¿Fluorescence microscopy colocalization of lipid-nucleic acid nanoparticles with wildtype and mutant Rab5-GFP: A platform for investigating early endosomal events,¿ Biochimica et Biophysica Acta - Biomembranes, vol. 1848, no. 6, 2015, doi: 10.1016/j.bbamem.2015.03.001. | |
dc.rights | Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores. | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_f1cf | |
dc.title | Development of a non-viral delivery nanoplatform for genomic therapy based on iron oxide nanoparticles and recombinant Cas9 for potential use in genetic heterozygous orphan diseases | |
dc.type | Trabajo de grado - Maestría | |