dc.contributorSierra Ramírez, Rocio
dc.contributorSalcedo Galán, Felipe
dc.contributorContreras, Lydia M.
dc.contributorGrupo de Diseño de Productos y Procesos (GDPP) Rocio Sierra Ramirez. Línea de Investigación: Ingeniería Biológica
dc.creatorMonsalve Villamil, Daniel Andrés
dc.date.accessioned2022-03-04T13:23:03Z
dc.date.available2022-03-04T13:23:03Z
dc.date.created2022-03-04T13:23:03Z
dc.date.issued2021-08-03
dc.identifierhttp://hdl.handle.net/1992/56101
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.description.abstractThe evaluation of the interaction of gold nanoparticles and the phenolic compound chlorogenic acid with laccase isoforms produced by the white root fungus P. ostreatus was performed. Key interactions were evaluated both through in silico techniques and laboratory measurements. In the computational study, the stability of chlorogenic acid in the laccase active site in the presence of a gold nanoparticle was analyzed using molecular dockings and molecular dynamics. Parametrization of the non-standard 4 copper center active site of the enzyme was performed. Distances between copper ions and residues were close enough to those reported in the literature for laccases and multicopper oxidases. Chlorogenic acid was most stable near the three nuclear copper center, which is surprising because it is different from the expected kinetic configuration. Stable configurations near the mononuclear copper center were rarely found and the ligand showed a preference for histidines 143 and 145 in the enzyme active site. Presence of gold nanoparticle near the trinuclear center access of the catalytic pocket retained the ligand for longer inside the active site. Stabilization of chlorogenic acid in the laccase catalytic pocket can be related to higher activity during the oxidation processes, gold nanoparticle interference in ligand leaving active site could inhibit such oxidation as seen in the experimental work. The in silico study led to conclude that the laccase isoforms 2 and 10 share homology, 3D configuration and are 99% identical prior the translation processes. For all experiments, an enzyme extract was used where the presence of the laccase isoforms 2 and 10 was ensured. Furthermore, the experimental work was aimed to determine the influence of gold nanoparticles on chlorogenic acid oxidation and vice versa, that is, the influence of chlorogenic acid on the synthesis of gold nanoparticles. Using a central composite experimental design with temperature, amount of chlorogenic acid, and enzymatic activity as factors, it was found that the best reaction conditions for gold nanoparticle synthesis were 75,2°C and enzyme activity of 113 UL-1 in the presence of chlorogenic acid. Also, below 50°C and 80 UL-1 chlorogenic acid might inhibit nanoparticle synthesis. On the other hand, low chlorogenic acid oxidation rates were found when gold nanoparticles were present. Nanoparticle characterization was done though SEM and EDX analysis. Spherical 20 nm to 48 nm nanoparticles that agglomerate in 200 nm structures were found. Characterization suggests that a bionanoconjugate of laccase and gold nanoparticles may have formed. Key words: gold nanoparticle synthesis, laccase, active site, interaction, oxidation, stability.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ingeniería Química
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Química y de Alimentos
dc.relationN. Elahi, M. Kamali, y M. H. Baghersad, «Recent biomedical applications of gold nanoparticles: A review», Talanta, vol. 184, pp. 537-556, jul. 2018, doi: 10.1016/j.talanta.2018.02.088.
dc.relationY.-C. Yeh, B. Creran, y V. M. Rotello, «Gold nanoparticles: preparation, properties, and applications in bionanotechnology», Nanoscale, vol. 4, n.o 6, pp. 1871- 1880, mar. 2012, doi: 10.1039/C1NR11188D.
dc.relationS. Ahmed, null Annu, S. Ikram, y S. Yudha S, «Biosynthesis of gold nanoparticles: A green approach», J Photochem Photobiol B, vol. 161, pp. 141-153, ago. 2016, doi: 10.1016/j.jphotobiol.2016.04.034.
dc.relationA. I. El-Batal, N. M. ElKenawy, A. S. Yassin, y M. A. Amin, «Laccase production by Pleurotus ostreatus and its application in synthesis of gold nanoparticles», Biotechnology Reports, vol. 5, pp. 31-39, mar. 2015, doi: 10.1016/j.btre.2014.11.001.
dc.relationN. Durán, R. Cuevas, L. Cordi, O. Rubilar, y M. C. Diez, «Biogenic silver nanoparticles associated with silver chloride nanoparticles (Ag@AgCl) produced by laccase from Trametes versicolor», SpringerPlus, vol. 3, n.o 1, p. 645, dic. 2014, doi: 10.1186/2193-1801-3-645.
dc.relationO. V. Morozova, G. P. Shumakovich, M. A. Gorbacheva, S. V. Shleev, y A. I. Yaropolov, «Blue laccases», Biochemistry Moscow, vol. 72, n.o 10, pp. 1136-1150, oct. 2007, doi: 10.1134/S0006297907100112.
dc.relationJ.-R. Jeon, P. Baldrian, K. Murugesan, y Y.-S. Chang, «Laccase-catalysed oxidations of naturally occurring phenols: from in vivo biosynthetic pathways to green synthetic applications: Laccases and natural phenols for organic synthesis», Microbial Biotechnology, vol. 5, n.o 3, pp. 318-332, may 2012, doi: 10.1111/j.1751- 7915.2011.00273.x
dc.relationG. Fachniar, M. P. Koentjoro, Isdiantoni, I. Ekawati, y E. N. Prasetyo, «Effect of laccase oxidation on phenol content and antioxidant capacity of roasted coffee», Perm, Russia, 2020, p. 070003. doi: 10.1063/5.0000775.
dc.relationN. Kulkarni y U. Muddapur, «Biosynthesis of Metal Nanoparticles: A Review», Journal of Nanotechnology, vol. 2014, p. e510246, may 2014, doi: 10.1155/2014/510246.
dc.relationA. A. Yaqoob et al., «Recent Advances in Metal Decorated Nanomaterials and Their Various Biological Applications: A Review», Front. Chem., vol. 0, 2020, doi: 10.3389/fchem.2020.00341.
dc.relationK. Saha, S. S. Agasti, C. Kim, X. Li, y V. M. Rotello, «Gold Nanoparticles in Chemical and Biological Sensing», Chem. Rev., vol. 112, n.o 5, pp. 2739-2779, may 2012, doi: 10.1021/cr2001178
dc.relationS. J. Amina y B. Guo, «A Review on the Synthesis and Functionalization of Gold Nanoparticles as a Drug Delivery Vehicle», IJN, vol. Volume 15, pp. 9823-9857, dic. 2020, doi: 10.2147/IJN.S279094.
dc.relationY. Long, S. Wang, Y. Wang, F. Deng, y T. Ding, «Light-Directed Growth/Etching of Gold Nanoparticles via Plasmonic Hot Carriers», J. Phys. Chem. C, vol. 124, n.o 35, pp. 19212-19218, sep. 2020, doi: 10.1021/acs.jpcc.0c04672.
dc.relationF. d'Acunzo, C. Galli, y B. Masci, «Oxidation of phenols by laccase and laccasemediator systems: Solubility and steric issues», European Journal of Biochemistry, vol. 269, n.o 21, pp. 5330-5335, nov. 2002, doi: 10.1046/j.1432-1033.2002.03256.x.
dc.relationC. Martínez-Sotres, J. G. Rutiaga-Quiñones, R. Herrera-Bucio, M. Gallo, y P. López-Albarrán, «Molecular docking insights into the inhibition of laccase activity by medicarpin», Wood Sci Technol, vol. 49, n.o 4, pp. 857-868, jul. 2015, doi: 10.1007/s00226-015-0734-8
dc.relationA. K. S. Kameshwar, R. Barber, y W. Qin, «Comparative modeling and molecular docking analysis of white, brown and soft rot fungal laccases using lignin model compounds for understanding the structural and functional properties of laccases», Journal of Molecular Graphics and Modelling, vol. 79, pp. 15-26, ene. 2018, doi: 10.1016/j.jmgm.2017.10.019.
dc.relationL. Arregui et al., «Laccases: structure, function, and potential application in water bioremediation», Microb Cell Fact, vol. 18, n.o 1, p. 200, dic. 2019, doi: 10.1186/s12934- 019-1248-0.
dc.relationS. S. More, R. P. S., P. K., S. M., S. Malini, y V. S. M., «Isolation, Purification, and Characterization of Fungal Laccase from Pleurotus sp.», Enzyme Research, vol. 2011, p. e248735, sep. 2011, doi: 10.4061/2011/248735.
dc.relationP. Baldrian, «Fungal laccases ¿ occurrence and properties», FEMS Microbiol Rev, vol. 30, n.o 2, pp. 215-242, mar. 2006, doi: 10.1111/j.1574-4976.2005.00010.x.
dc.relationS. S. Desai y C. Nityanand, «Microbial Laccases and their Applications: A Review», Asian J. of Biotechnology, vol. 3, n.o 2, pp. 98-124, feb. 2011, doi: 10.3923/ajbkr.2011.98.124.
dc.relationW.-C. Liu, C.-A. Hsu, N.-C. Wang, W.-Y. Jeng, A. H.-J. Wang, y L.-F. Shyur, «The role of protein glycosylation in laccases from Lentinus sp.», The FASEB Journal, vol. 27, n.o S1, p. 561.9-561.9, 2013, doi: 10.1096/fasebj.27.1_supplement.561.9.
dc.relationM. Maestre-Reyna et al., «Structural and Functional Roles of Glycosylation in Fungal Laccase from Lentinus sp.», PLoS One, vol. 10, n.o 4, p. e0120601, abr. 2015, doi: 10.1371/journal.pone.0120601.
dc.relationO. Vite-Vallejo et al., «The role of N-glycosylation on the enzymatic activity of a Pycnoporus sanguineus laccase», Enzyme and Microbial Technology, vol. 45, n.o 3, pp. 233-239, sep. 2009, doi: 10.1016/j.enzmictec.2009.05.007.
dc.relationS. Rodríguez Couto y J. L. Toca Herrera, «Industrial and biotechnological applications of laccases: A review», Biotechnology Advances, vol. 24, n.o 5, pp. 500-513, sep. 2006, doi: 10.1016/j.biotechadv.2006.04.003.
dc.relationN. Santhanam, J. M. Vivanco, S. R. Decker, y K. F. Reardon, «Expression of industrially relevant laccases: prokaryotic style», Trends in Biotechnology, vol. 29, n.o 10, pp. 480-489, oct. 2011, doi: 10.1016/j.tibtech.2011.04.005.
dc.relationP. J. Strong y H. Claus, «Laccase: A Review of Its Past and Its Future in Bioremediation», Critical Reviews in Environmental Science and Technology, vol. 41, n.o 4, pp. 373-434, ene. 2011, doi: 10.1080/10643380902945706
dc.relationK. Agrawal, V. Chaturvedi, y P. Verma, «Fungal laccase discovered but yet undiscovered», Bioresources and Bioprocessing, vol. 5, n.o 1, p. 4, ene. 2018, doi: 10.1186/s40643-018-0190-z.
dc.relationJ. L. Cole, G. O. Tan, E. K. Yang, K. O. Hodgson, y E. I. Solomon, «Reactivity of the laccase trinuclear copper active site with dioxygen: an x-ray absorption edge study», J. Am. Chem. Soc., vol. 112, n.o 6, pp. 2243-2249, mar. 1990, doi: 10.1021/ja00162a025.
dc.relationS. M. Jones y E. I. Solomon, «Electron Transfer and Reaction Mechanism of Laccases», Cell Mol Life Sci, vol. 72, n.o 5, pp. 869-883, mar. 2015, doi: 10.1007/s00018- 38 014-1826-6.
dc.relationT. V. Tikhonova et al., «Trinuclear copper biocatalytic center forms an active site of thiocyanate dehydrogenase», Proc Natl Acad Sci USA, vol. 117, n.o 10, pp. 5280-5290, mar. 2020, doi: 10.1073/pnas.1922133117.
dc.relationR. Dasgupta et al., «Chemical Exchange at the Trinuclear Copper Center of Small Laccase from Streptomyces coelicolor», Biophysical Journal, vol. 119, n.o 1, pp. 9-14, jul. 2020, doi: 10.1016/j.bpj.2020.05.022.
dc.relationM. Dagys, K. Haberska, S. Shleev, T. Arnebrant, J. Kulys, y T. Ruzgas, «Laccase' gold nanoparticle assisted bioelectrocatalytic reduction of oxygen», Electrochemistry Communications, vol. 12, n.o 7, pp. 933-935, jul. 2010, doi: 10.1016/j.elecom.2010.04.024.
dc.relationX. Yu, F. Zou, P. Yao, X. Huang, y Y. Qu, «Gold nanoparticles tune the activity of laccase in anionic reverse micelles», Soft Matter, vol. 10, n.o 34, p. 6425, jun. 2014, doi: 10.1039/C4SM01127A.
dc.relationR. G. Rayavarapu, W. Petersen, C. Ungureanu, J. N. Post, T. G. van Leeuwen, y S. Manohar, «Synthesis and Bioconjugation of Gold Nanoparticles as Potential Molecular Probes for Light-Based Imaging Techniques», International Journal of Biomedical Imaging, vol. 2007, p. e29817, ago. 2007, doi: 10.1155/2007/29817.
dc.relationM. Peixoto de Almeida et al., «Measurement of adsorption constants of laccase on gold nanoparticles to evaluate the enhancement in enzyme activity of adsorbed laccase», Phys. Chem. Chem. Phys., vol. 20, n.o 24, pp. 16761-16769, 2018, doi: 10.1039/C8CP03116A.
dc.relationF. Li, Z. Li, C. Zeng, y Y. Hu, «Laccase-Assisted Rapid Synthesis of Colloidal Gold Nanoparticles for the Catalytic Reduction of 4-Nitrophenol», J. Braz. Chem. Soc., 2016, doi: 10.21577/0103-5053.20160246.
dc.relationR. Sanghi, P. Verma, y S. Puri, «Enzymatic Formation of Gold Nanoparticles Using <i>Phanerochaete Chrysosporium</i&gt»;, ACES, vol. 01, n.o 03, pp. 154- 162, 2011, doi: 10.4236/aces.2011.13023.
dc.relationM. A. Faramarzi y H. Forootanfar, «Biosynthesis and characterization of gold nanoparticles produced by laccase from Paraconiothyrium variabile», Colloids and Surfaces B: Biointerfaces, vol. 87, n.o 1, pp. 23-27, oct. 2011, doi: 10.1016/j.colsurfb.2011.04.022.
dc.relationR. C. Susana y T. H. L., «Inhibitors of Laccases: A Review», Current Enzyme Inhibition, vol. 2, n.o 4, pp. 343-352, oct. 2006.
dc.relationM. Alfaro et al., «Comparative and transcriptional analysis of the predicted secretome in the lignocellulose-degrading basidiomycete fungus Pleurotus ostreatus: Functional study of P. ostreatus bioinfosecretome», Environmental Microbiology, vol. 18, n.o 12, pp. 4710-4726, dic. 2016, doi: 10.1111/1462-2920.13360.
dc.relationR. Castanera et al., «Transposable Elements versus the Fungal Genome: Impact on Whole-Genome Architecture and Transcriptional Profiles», PLoS Genet, vol. 12, n.o 6, p. e1006108, jun. 2016, doi: 10.1371/journal.pgen.1006108.
dc.relationL. Kupski, G. M. Salcedo, S. S. Caldas, T. D. de Souza, E. B. Furlong, y E. G. Primel, «Optimization of a laccase-mediator system with natural redox-mediating compounds for pesticide removal», Environ Sci Pollut Res Int, vol. 26, n.o 5, pp. 5131- 5139, feb. 2019, doi: 10.1007/s11356-018-4010-y.
dc.relationA. Roy, A. Kucukural, y Y. Zhang, «I-TASSER: a unified platform for automated 39 protein structure and function prediction», Nat Protoc, vol. 5, n.o 4, pp. 725-738, abr. 2010, doi: 10.1038/nprot.2010.5.
dc.relationF. Madeira et al., «The EMBL-EBI search and sequence analysis tools APIs in 2019», Nucleic Acids Research, vol. 47, n.o W1, pp. W636-W641, jul. 2019, doi: 10.1093/nar/gkz268.
dc.relationM. Blum et al., «The InterPro protein families and domains database: 20 years on», Nucleic Acids Research, vol. 49, n.o D1, pp. D344-D354, ene. 2021, doi: 10.1093/nar/gkaa977.
dc.relationS. Franco-Ulloa, L. Riccardi, F. Rimembrana, M. Pini, y M. De Vivo, «NanoModeler: A Webserver for Molecular Simulations and Engineering of Nanoparticles», J. Chem. Theory Comput., vol. 15, n.o 3, pp. 2022-2032, mar. 2019, doi: 10.1021/acs.jctc.8b01304.
dc.relationW. Tian, C. Chen, X. Lei, J. Zhao, y J. Liang, «CASTp 3.0: computed atlas of surface topography of proteins», Nucleic Acids Research, vol. 46, n.o W1, pp. W363- W367, jul. 2018, doi: 10.1093/nar/gky473.
dc.relationC. J. Williams et al., «MolProbity: More and better reference data for improved all-atom structure validation», Protein Sci, vol. 27, n.o 1, pp. 293-315, ene. 2018, doi: 10.1002/pro.3330.
dc.relationC. Colovos y T. O. Yeates, «Verification of protein structures: Patterns of nonbonded atomic interactions», Protein Sci., vol. 2, n.o 9, pp. 1511-1519, sep. 1993, doi: 10.1002/pro.5560020916.
dc.relationM. Wiederstein y M. J. Sippl, «ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins», Nucleic Acids Res, vol. 35, n.o Web Server issue, pp. W407-W410, jul. 2007, doi: 10.1093/nar/gkm290.
dc.relationR. Lüthy, J. U. Bowie, y D. Eisenberg, «Assessment of protein models with threedimensional profiles», Nature, vol. 356, n.o 6364, pp. 83-85, mar. 1992, doi: 10.1038/356083a0.
dc.relationH. J. C. Berendsen, D. van der Spoel, y R. van Drunen, «GROMACS: A messagepassing parallel molecular dynamics implementation», Computer Physics Communications, vol. 91, n.o 1, pp. 43-56, sep. 1995, doi: 10.1016/0010-4655(95)00042- E.
dc.relation«Schrödinger Release 2021-2: Maestro, Schrödinger, LLC, New York, NY, 2021.»
dc.relationD. Dinary Durán-Sequeda1,2, Daniela Suspes1, Estibenson Maestre1, Gumer Pérez2, Manuel Alfaro2, Antonio G. Pisabarro2, Lucía Ramírez2 and Rocío SierraRamírez1, «EFFECT OF NUTRITIONAL FACTORS AND COPPER ON THE REGULATION OF LACCASE ISOENZYMES IN Pleurotus ostreatus», Doctoal, to be published.
dc.relationS. K. Kadam, A. S. Tamboli, S. B. Sambhare, B.-H. Jeon, y S. P. Govindwar, «Enzymatic analysis, structural study and molecular docking of laccase and catalase from B. subtilis SK1 after textile dye exposure», Ecological Informatics, vol. 48, pp. 269-280, nov. 2018, doi: 10.1016/j.ecoinf.2018.10.003.
dc.relationM. A. Tadesse, A. D'Annibale, C. Galli, P. Gentili, y F. Sergi, «An assessment of the relative contributions of redox and steric issues to laccase specificity towards putative substrates», Org. Biomol. Chem., vol. 6, n.o 5, pp. 868-878, feb. 2008, doi: 10.1039/B716002J.
dc.relationL. Santagostini et al., «Probing the location of the substrate binding site of ascorbate oxidase near type 1 copper: an investigation through spectroscopic, inhibition and docking studies», The International Journal of Biochemistry & Cell Biology, vol. 36, n.o 5, pp. 881-892, may 2004, doi: 10.1016/j.biocel.2003.10.003.
dc.relation«Trinuclear copper biocatalytic center forms an active site of thiocyanate dehydrogenase | PNAS». https://www.pnas.org/content/117/10/5280 (accedido jul. 23, 2021).
dc.relation«Laccase», Structure-function studies of proteins, ene. 11, 2019. https://slavazaitsev914078364.wordpress.com/laccase/ (accedido jul. 23, 2021).
dc.rightsAl consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleStudy of the interaction of the oxidoreductase laccase of Pleurotus ostreatus with gold nanoparticles and phenolic compounds through empirical and in silico techniques
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución