dc.contributor | Sierra Ramírez, Rocio | |
dc.contributor | Salcedo Galán, Felipe | |
dc.contributor | Contreras, Lydia M. | |
dc.contributor | Grupo de Diseño de Productos y Procesos (GDPP) Rocio Sierra Ramirez. Línea de Investigación: Ingeniería Biológica | |
dc.creator | Monsalve Villamil, Daniel Andrés | |
dc.date.accessioned | 2022-03-04T13:23:03Z | |
dc.date.available | 2022-03-04T13:23:03Z | |
dc.date.created | 2022-03-04T13:23:03Z | |
dc.date.issued | 2021-08-03 | |
dc.identifier | http://hdl.handle.net/1992/56101 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.description.abstract | The evaluation of the interaction of gold nanoparticles and the phenolic compound chlorogenic acid with laccase isoforms produced by the white root fungus P. ostreatus was performed. Key interactions were evaluated both through in silico techniques and laboratory measurements. In the computational study, the stability of chlorogenic acid in the laccase active site in the presence of a gold nanoparticle was analyzed using molecular dockings and molecular dynamics. Parametrization of the non-standard 4 copper center active site of the enzyme was performed. Distances between copper ions and residues were close enough to those reported in the literature for laccases and multicopper oxidases. Chlorogenic acid was most stable near the three nuclear copper center, which is surprising because it is different from the expected kinetic configuration. Stable configurations near the mononuclear copper center were rarely found and the ligand showed a preference for histidines 143 and 145 in the enzyme active site. Presence of gold nanoparticle near the trinuclear center access of the catalytic pocket retained the ligand for longer inside the active site. Stabilization of chlorogenic acid in the laccase catalytic pocket can be related to higher activity during the oxidation processes, gold nanoparticle interference in ligand leaving active site could inhibit such oxidation as seen in the experimental work. The in silico study led to conclude that the laccase isoforms 2 and 10 share homology, 3D configuration and are 99% identical prior the translation processes. For all experiments, an enzyme extract was used where the presence of the laccase isoforms 2 and 10 was ensured. Furthermore, the experimental work was aimed to determine the influence of gold nanoparticles on chlorogenic acid oxidation and vice versa, that is, the influence of chlorogenic acid on the synthesis of gold nanoparticles. Using a central composite experimental design with temperature, amount of chlorogenic acid, and enzymatic activity as factors, it was found that the best reaction conditions for gold nanoparticle synthesis were 75,2°C and enzyme activity of 113 UL-1 in the presence of chlorogenic acid. Also, below 50°C and 80 UL-1 chlorogenic acid might inhibit nanoparticle synthesis. On the other hand, low chlorogenic acid oxidation rates were found when gold nanoparticles were present. Nanoparticle characterization was done though SEM and EDX analysis. Spherical 20 nm to 48 nm nanoparticles that agglomerate in 200 nm structures were found. Characterization suggests that a bionanoconjugate of laccase and gold nanoparticles may have formed.
Key words: gold nanoparticle synthesis, laccase, active site, interaction, oxidation, stability. | |
dc.language | eng | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Maestría en Ingeniería Química | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Departamento de Ingeniería Química y de Alimentos | |
dc.relation | N. Elahi, M. Kamali, y M. H. Baghersad, «Recent biomedical applications of gold
nanoparticles: A review», Talanta, vol. 184, pp. 537-556, jul. 2018, doi:
10.1016/j.talanta.2018.02.088. | |
dc.relation | Y.-C. Yeh, B. Creran, y V. M. Rotello, «Gold nanoparticles: preparation,
properties, and applications in bionanotechnology», Nanoscale, vol. 4, n.o 6, pp. 1871-
1880, mar. 2012, doi: 10.1039/C1NR11188D. | |
dc.relation | S. Ahmed, null Annu, S. Ikram, y S. Yudha S, «Biosynthesis of gold
nanoparticles: A green approach», J Photochem Photobiol B, vol. 161, pp. 141-153, ago.
2016, doi: 10.1016/j.jphotobiol.2016.04.034. | |
dc.relation | A. I. El-Batal, N. M. ElKenawy, A. S. Yassin, y M. A. Amin, «Laccase production
by Pleurotus ostreatus and its application in synthesis of gold nanoparticles»,
Biotechnology Reports, vol. 5, pp. 31-39, mar. 2015, doi: 10.1016/j.btre.2014.11.001. | |
dc.relation | N. Durán, R. Cuevas, L. Cordi, O. Rubilar, y M. C. Diez, «Biogenic silver
nanoparticles associated with silver chloride nanoparticles (Ag@AgCl) produced by
laccase from Trametes versicolor», SpringerPlus, vol. 3, n.o 1, p. 645, dic. 2014, doi:
10.1186/2193-1801-3-645. | |
dc.relation | O. V. Morozova, G. P. Shumakovich, M. A. Gorbacheva, S. V. Shleev, y A. I.
Yaropolov, «Blue laccases», Biochemistry Moscow, vol. 72, n.o 10, pp. 1136-1150, oct.
2007, doi: 10.1134/S0006297907100112. | |
dc.relation | J.-R. Jeon, P. Baldrian, K. Murugesan, y Y.-S. Chang, «Laccase-catalysed
oxidations of naturally occurring phenols: from in vivo biosynthetic pathways to green
synthetic applications: Laccases and natural phenols for organic synthesis», Microbial
Biotechnology, vol. 5, n.o 3, pp. 318-332, may 2012, doi: 10.1111/j.1751-
7915.2011.00273.x | |
dc.relation | G. Fachniar, M. P. Koentjoro, Isdiantoni, I. Ekawati, y E. N. Prasetyo, «Effect of
laccase oxidation on phenol content and antioxidant capacity of roasted coffee», Perm,
Russia, 2020, p. 070003. doi: 10.1063/5.0000775. | |
dc.relation | N. Kulkarni y U. Muddapur, «Biosynthesis of Metal Nanoparticles: A Review»,
Journal of Nanotechnology, vol. 2014, p. e510246, may 2014, doi: 10.1155/2014/510246. | |
dc.relation | A. A. Yaqoob et al., «Recent Advances in Metal Decorated Nanomaterials and
Their Various Biological Applications: A Review», Front. Chem., vol. 0, 2020, doi:
10.3389/fchem.2020.00341. | |
dc.relation | K. Saha, S. S. Agasti, C. Kim, X. Li, y V. M. Rotello, «Gold Nanoparticles in
Chemical and Biological Sensing», Chem. Rev., vol. 112, n.o 5, pp. 2739-2779, may 2012,
doi: 10.1021/cr2001178 | |
dc.relation | S. J. Amina y B. Guo, «A Review on the Synthesis and Functionalization of Gold
Nanoparticles as a Drug Delivery Vehicle», IJN, vol. Volume 15, pp. 9823-9857, dic.
2020, doi: 10.2147/IJN.S279094. | |
dc.relation | Y. Long, S. Wang, Y. Wang, F. Deng, y T. Ding, «Light-Directed Growth/Etching
of Gold Nanoparticles via Plasmonic Hot Carriers», J. Phys. Chem. C, vol. 124, n.o 35,
pp. 19212-19218, sep. 2020, doi: 10.1021/acs.jpcc.0c04672. | |
dc.relation | F. d'Acunzo, C. Galli, y B. Masci, «Oxidation of phenols by laccase and laccasemediator systems: Solubility and steric issues», European Journal of Biochemistry, vol.
269, n.o 21, pp. 5330-5335, nov. 2002, doi: 10.1046/j.1432-1033.2002.03256.x. | |
dc.relation | C. Martínez-Sotres, J. G. Rutiaga-Quiñones, R. Herrera-Bucio, M. Gallo, y P.
López-Albarrán, «Molecular docking insights into the inhibition of laccase activity by
medicarpin», Wood Sci Technol, vol. 49, n.o 4, pp. 857-868, jul. 2015, doi:
10.1007/s00226-015-0734-8 | |
dc.relation | A. K. S. Kameshwar, R. Barber, y W. Qin, «Comparative modeling and molecular
docking analysis of white, brown and soft rot fungal laccases using lignin model
compounds for understanding the structural and functional properties of laccases»,
Journal of Molecular Graphics and Modelling, vol. 79, pp. 15-26, ene. 2018, doi:
10.1016/j.jmgm.2017.10.019. | |
dc.relation | L. Arregui et al., «Laccases: structure, function, and potential application in water
bioremediation», Microb Cell Fact, vol. 18, n.o 1, p. 200, dic. 2019, doi: 10.1186/s12934-
019-1248-0. | |
dc.relation | S. S. More, R. P. S., P. K., S. M., S. Malini, y V. S. M., «Isolation, Purification,
and Characterization of Fungal Laccase from Pleurotus sp.», Enzyme Research, vol. 2011,
p. e248735, sep. 2011, doi: 10.4061/2011/248735. | |
dc.relation | P. Baldrian, «Fungal laccases ¿ occurrence and properties», FEMS Microbiol Rev,
vol. 30, n.o 2, pp. 215-242, mar. 2006, doi: 10.1111/j.1574-4976.2005.00010.x. | |
dc.relation | S. S. Desai y C. Nityanand, «Microbial Laccases and their Applications: A
Review», Asian J. of Biotechnology, vol. 3, n.o 2, pp. 98-124, feb. 2011, doi:
10.3923/ajbkr.2011.98.124. | |
dc.relation | W.-C. Liu, C.-A. Hsu, N.-C. Wang, W.-Y. Jeng, A. H.-J. Wang, y L.-F. Shyur,
«The role of protein glycosylation in laccases from Lentinus sp.», The FASEB Journal,
vol. 27, n.o S1, p. 561.9-561.9, 2013, doi: 10.1096/fasebj.27.1_supplement.561.9. | |
dc.relation | M. Maestre-Reyna et al., «Structural and Functional Roles of Glycosylation in
Fungal Laccase from Lentinus sp.», PLoS One, vol. 10, n.o 4, p. e0120601, abr. 2015, doi:
10.1371/journal.pone.0120601. | |
dc.relation | O. Vite-Vallejo et al., «The role of N-glycosylation on the enzymatic activity of a
Pycnoporus sanguineus laccase», Enzyme and Microbial Technology, vol. 45, n.o 3, pp.
233-239, sep. 2009, doi: 10.1016/j.enzmictec.2009.05.007. | |
dc.relation | S. Rodríguez Couto y J. L. Toca Herrera, «Industrial and biotechnological
applications of laccases: A review», Biotechnology Advances, vol. 24, n.o 5, pp. 500-513,
sep. 2006, doi: 10.1016/j.biotechadv.2006.04.003. | |
dc.relation | N. Santhanam, J. M. Vivanco, S. R. Decker, y K. F. Reardon, «Expression of
industrially relevant laccases: prokaryotic style», Trends in Biotechnology, vol. 29, n.o 10,
pp. 480-489, oct. 2011, doi: 10.1016/j.tibtech.2011.04.005. | |
dc.relation | P. J. Strong y H. Claus, «Laccase: A Review of Its Past and Its Future in
Bioremediation», Critical Reviews in Environmental Science and Technology, vol. 41, n.o
4, pp. 373-434, ene. 2011, doi: 10.1080/10643380902945706 | |
dc.relation | K. Agrawal, V. Chaturvedi, y P. Verma, «Fungal laccase discovered but yet
undiscovered», Bioresources and Bioprocessing, vol. 5, n.o 1, p. 4, ene. 2018, doi:
10.1186/s40643-018-0190-z. | |
dc.relation | J. L. Cole, G. O. Tan, E. K. Yang, K. O. Hodgson, y E. I. Solomon, «Reactivity of
the laccase trinuclear copper active site with dioxygen: an x-ray absorption edge study»,
J. Am. Chem. Soc., vol. 112, n.o 6, pp. 2243-2249, mar. 1990, doi: 10.1021/ja00162a025. | |
dc.relation | S. M. Jones y E. I. Solomon, «Electron Transfer and Reaction Mechanism of
Laccases», Cell Mol Life Sci, vol. 72, n.o 5, pp. 869-883, mar. 2015, doi: 10.1007/s00018-
38
014-1826-6. | |
dc.relation | T. V. Tikhonova et al., «Trinuclear copper biocatalytic center forms an active site
of thiocyanate dehydrogenase», Proc Natl Acad Sci USA, vol. 117, n.o 10, pp. 5280-5290,
mar. 2020, doi: 10.1073/pnas.1922133117. | |
dc.relation | R. Dasgupta et al., «Chemical Exchange at the Trinuclear Copper Center of Small
Laccase from Streptomyces coelicolor», Biophysical Journal, vol. 119, n.o 1, pp. 9-14, jul.
2020, doi: 10.1016/j.bpj.2020.05.022. | |
dc.relation | M. Dagys, K. Haberska, S. Shleev, T. Arnebrant, J. Kulys, y T. Ruzgas, «Laccase'
gold nanoparticle assisted bioelectrocatalytic reduction of oxygen», Electrochemistry
Communications, vol. 12, n.o 7, pp. 933-935, jul. 2010, doi:
10.1016/j.elecom.2010.04.024. | |
dc.relation | X. Yu, F. Zou, P. Yao, X. Huang, y Y. Qu, «Gold nanoparticles tune the activity of
laccase in anionic reverse micelles», Soft Matter, vol. 10, n.o 34, p. 6425, jun. 2014, doi:
10.1039/C4SM01127A. | |
dc.relation | R. G. Rayavarapu, W. Petersen, C. Ungureanu, J. N. Post, T. G. van Leeuwen, y S.
Manohar, «Synthesis and Bioconjugation of Gold Nanoparticles as Potential Molecular
Probes for Light-Based Imaging Techniques», International Journal of Biomedical
Imaging, vol. 2007, p. e29817, ago. 2007, doi: 10.1155/2007/29817. | |
dc.relation | M. Peixoto de Almeida et al., «Measurement of adsorption constants of laccase on
gold nanoparticles to evaluate the enhancement in enzyme activity of adsorbed laccase»,
Phys. Chem. Chem. Phys., vol. 20, n.o 24, pp. 16761-16769, 2018, doi:
10.1039/C8CP03116A. | |
dc.relation | F. Li, Z. Li, C. Zeng, y Y. Hu, «Laccase-Assisted Rapid Synthesis of Colloidal
Gold Nanoparticles for the Catalytic Reduction of 4-Nitrophenol», J. Braz. Chem. Soc.,
2016, doi: 10.21577/0103-5053.20160246. | |
dc.relation | R. Sanghi, P. Verma, y S. Puri, «Enzymatic Formation of Gold Nanoparticles
Using <i>Phanerochaete Chrysosporium</i>»;, ACES, vol. 01, n.o 03, pp. 154-
162, 2011, doi: 10.4236/aces.2011.13023. | |
dc.relation | M. A. Faramarzi y H. Forootanfar, «Biosynthesis and characterization of gold
nanoparticles produced by laccase from Paraconiothyrium variabile», Colloids and
Surfaces B: Biointerfaces, vol. 87, n.o 1, pp. 23-27, oct. 2011, doi:
10.1016/j.colsurfb.2011.04.022. | |
dc.relation | R. C. Susana y T. H. L., «Inhibitors of Laccases: A Review», Current Enzyme
Inhibition, vol. 2, n.o 4, pp. 343-352, oct. 2006. | |
dc.relation | M. Alfaro et al., «Comparative and transcriptional analysis of the predicted
secretome in the lignocellulose-degrading basidiomycete fungus Pleurotus ostreatus:
Functional study of P. ostreatus bioinfosecretome», Environmental Microbiology, vol. 18,
n.o 12, pp. 4710-4726, dic. 2016, doi: 10.1111/1462-2920.13360. | |
dc.relation | R. Castanera et al., «Transposable Elements versus the Fungal Genome: Impact on
Whole-Genome Architecture and Transcriptional Profiles», PLoS Genet, vol. 12, n.o 6, p.
e1006108, jun. 2016, doi: 10.1371/journal.pgen.1006108. | |
dc.relation | L. Kupski, G. M. Salcedo, S. S. Caldas, T. D. de Souza, E. B. Furlong, y E. G.
Primel, «Optimization of a laccase-mediator system with natural redox-mediating
compounds for pesticide removal», Environ Sci Pollut Res Int, vol. 26, n.o 5, pp. 5131-
5139, feb. 2019, doi: 10.1007/s11356-018-4010-y. | |
dc.relation | A. Roy, A. Kucukural, y Y. Zhang, «I-TASSER: a unified platform for automated
39 protein structure and function prediction», Nat Protoc, vol. 5, n.o 4, pp. 725-738, abr.
2010, doi: 10.1038/nprot.2010.5. | |
dc.relation | F. Madeira et al., «The EMBL-EBI search and sequence analysis tools APIs in
2019», Nucleic Acids Research, vol. 47, n.o W1, pp. W636-W641, jul. 2019, doi:
10.1093/nar/gkz268. | |
dc.relation | M. Blum et al., «The InterPro protein families and domains database: 20 years
on», Nucleic Acids Research, vol. 49, n.o D1, pp. D344-D354, ene. 2021, doi:
10.1093/nar/gkaa977. | |
dc.relation | S. Franco-Ulloa, L. Riccardi, F. Rimembrana, M. Pini, y M. De Vivo,
«NanoModeler: A Webserver for Molecular Simulations and Engineering of
Nanoparticles», J. Chem. Theory Comput., vol. 15, n.o 3, pp. 2022-2032, mar. 2019, doi:
10.1021/acs.jctc.8b01304. | |
dc.relation | W. Tian, C. Chen, X. Lei, J. Zhao, y J. Liang, «CASTp 3.0: computed atlas of
surface topography of proteins», Nucleic Acids Research, vol. 46, n.o W1, pp. W363-
W367, jul. 2018, doi: 10.1093/nar/gky473. | |
dc.relation | C. J. Williams et al., «MolProbity: More and better reference data for improved
all-atom structure validation», Protein Sci, vol. 27, n.o 1, pp. 293-315, ene. 2018, doi:
10.1002/pro.3330. | |
dc.relation | C. Colovos y T. O. Yeates, «Verification of protein structures: Patterns of
nonbonded atomic interactions», Protein Sci., vol. 2, n.o 9, pp. 1511-1519, sep. 1993, doi:
10.1002/pro.5560020916. | |
dc.relation | M. Wiederstein y M. J. Sippl, «ProSA-web: interactive web service for the
recognition of errors in three-dimensional structures of proteins», Nucleic Acids Res, vol.
35, n.o Web Server issue, pp. W407-W410, jul. 2007, doi: 10.1093/nar/gkm290. | |
dc.relation | R. Lüthy, J. U. Bowie, y D. Eisenberg, «Assessment of protein models with threedimensional profiles», Nature, vol. 356, n.o 6364, pp. 83-85, mar. 1992, doi:
10.1038/356083a0. | |
dc.relation | H. J. C. Berendsen, D. van der Spoel, y R. van Drunen, «GROMACS: A messagepassing parallel molecular dynamics implementation», Computer Physics
Communications, vol. 91, n.o 1, pp. 43-56, sep. 1995, doi: 10.1016/0010-4655(95)00042-
E. | |
dc.relation | «Schrödinger Release 2021-2: Maestro, Schrödinger, LLC, New York, NY,
2021.» | |
dc.relation | D. Dinary Durán-Sequeda1,2, Daniela Suspes1, Estibenson Maestre1, Gumer
Pérez2, Manuel Alfaro2, Antonio G. Pisabarro2, Lucía Ramírez2 and Rocío SierraRamírez1, «EFFECT OF NUTRITIONAL FACTORS AND COPPER ON THE
REGULATION OF LACCASE ISOENZYMES IN Pleurotus ostreatus», Doctoal, to be
published. | |
dc.relation | S. K. Kadam, A. S. Tamboli, S. B. Sambhare, B.-H. Jeon, y S. P. Govindwar,
«Enzymatic analysis, structural study and molecular docking of laccase and catalase from
B. subtilis SK1 after textile dye exposure», Ecological Informatics, vol. 48, pp. 269-280,
nov. 2018, doi: 10.1016/j.ecoinf.2018.10.003. | |
dc.relation | M. A. Tadesse, A. D'Annibale, C. Galli, P. Gentili, y F. Sergi, «An assessment of
the relative contributions of redox and steric issues to laccase specificity towards putative
substrates», Org. Biomol. Chem., vol. 6, n.o 5, pp. 868-878, feb. 2008, doi:
10.1039/B716002J. | |
dc.relation | L. Santagostini et al., «Probing the location of the substrate binding site of
ascorbate oxidase near type 1 copper: an investigation through spectroscopic, inhibition
and docking studies», The International Journal of Biochemistry & Cell Biology, vol. 36,
n.o 5, pp. 881-892, may 2004, doi: 10.1016/j.biocel.2003.10.003. | |
dc.relation | «Trinuclear copper biocatalytic center forms an active site of thiocyanate
dehydrogenase | PNAS». https://www.pnas.org/content/117/10/5280 (accedido jul. 23,
2021). | |
dc.relation | «Laccase», Structure-function studies of proteins, ene. 11, 2019.
https://slavazaitsev914078364.wordpress.com/laccase/ (accedido jul. 23, 2021). | |
dc.rights | Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores. | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Study of the interaction of the oxidoreductase laccase of Pleurotus ostreatus with gold nanoparticles and phenolic compounds through empirical and in silico techniques | |
dc.type | Trabajo de grado - Maestría | |