dc.contributor | Portilla Salinas, Jaime Antonio | |
dc.contributor | Tigreros Ortíz, Alexis | |
dc.contributor | Gamba Sánchez, Diego Alexander | |
dc.contributor | Chaur Valencia, Manuel Noe | |
dc.contributor | Grupo de Investigación en Compuestos Bio-orgánicos (GICOBIORG) | |
dc.creator | Peña Bernal, Carlos Arturo | |
dc.date.accessioned | 2022-03-10T19:58:08Z | |
dc.date.available | 2022-03-10T19:58:08Z | |
dc.date.created | 2022-03-10T19:58:08Z | |
dc.date.issued | 2021-12 | |
dc.identifier | http://hdl.handle.net/1992/56303 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.description.abstract | This work investigates the rational design of novel chemosensors based on hybrid inorganic/organic structures for detecting H+ and CN-. The synthesis of chemosensors that integrate ferrocene and pyrazolo[1,5-a]pyrimidine molecules is due to the D-A behavior this hybrid system exhibits. A solvatochromic study of 7-ferrocenyl-2-methylpyrazolo[1,5-a]pyrimidine, along with a multiparametric analysis from Catalán's coefficients, is made to understand better how the probe molecule interacts with different solvents in the determination and quantification of H+, with calculated LoD of 0.63 µmol L-1. The integration of an indolium moiety was used for the colorimetric sensing of CN-. The chemosensor showed an intense red coloration losing upon the nucleophilic addition of CN- to the chemosensor molecule with calculated LoD of 0.11 µmol L-1, well below the WHO requirements (1.9 µmol L-1). | |
dc.language | eng | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Maestría en Química | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Departamento de Química | |
dc.relation | Wang, B.; Anslyn, E. V. Chemosensors: Principles, Strategies, and Applications; John Wiley & Sons, 2011. | |
dc.relation | Khalil, G.; Brückner, C.; Ghandehari, M. Molecular Probes. In Optical Phenomenology and Applications: Health Monitoring for Infrastructure Materials and the Environment; Ghandehari, M., Ed.; Smart Sensors, Measurement and Instrumentation; Springer International Publishing: Cham, 2018; pp 35-48. https://doi.org/10.1007/978-3-319-70715-0_4. | |
dc.relation | Khan, S.; Chen, X.; Almahri, A.; Allehyani, E. S.; Alhumaydhi, F. A.; Ibrahim, M. M.; Ali, S. Recent Developments in Fluorescent and Colorimetric Chemosensors Based on Schiff Bases for Metallic Cations Detection: A Review. J. Environ. Chem. Eng. 2021, 9 (6), 106381. https://doi.org/10.1016/j.jece.2021.106381. | |
dc.relation | Patil, N. S.; Dhake, R. B.; Ahamed, M. I.; Fegade, U. A Mini Review on Organic Chemosensors for Cation Recognition (2013-19). J. Fluoresc. 2020, 30 (6), 1295-1330. https://doi.org/10.1007/s10895-020-02554-7. | |
dc.relation | Fukuhara, G. Analytical Supramolecular Chemistry: Colorimetric and Fluorimetric Chemosensors. J. Photochem. Photobiol. C Photochem. Rev. 2020, 42, 100340. https://doi.org/10.1016/j.jphotochemrev.2020.100340. | |
dc.relation | Upadhyay, S.; Singh, A.; Sinha, R.; Omer, S.; Negi, K. Colorimetric Chemosensors for D-Metal Ions: A Review in the Past, Present and Future Prospect. J. Mol. Struct. 2019, 1193, 89-102. https://doi.org/10.1016/j.molstruc.2019.05.007. | |
dc.relation | Wu, D.; C. Sedgwick, A.; Gunnlaugsson, T.; U. Akkaya, E.; Yoon, J.; D. James, T. Fluorescent Chemosensors: The Past, Present and Future. Chem. Soc. Rev. 2017, 46 (23), 7105-7123. https://doi.org/10.1039/C7CS00240H. | |
dc.relation | Kaur, K.; Saini, R.; Kumar, A.; Luxami, V.; Kaur, N.; Singh, P.; Kumar, S. Chemodosimeters: An Approach for Detection and Estimation of Biologically and Medically Relevant Metal Ions, Anions and Thiols. Coord. Chem. Rev. 2012, 256 (17), 1992-2028. https://doi.org/10.1016/j.ccr.2012.04.013. | |
dc.relation | Pati, P. B. Organic Chemodosimeter for Cyanide: A Nucleophilic Approach. Sens. Actuators B Chem. 2016, 222, 374-390. https://doi.org/10.1016/j.snb.2015.08.044. | |
dc.relation | Lee, S. Y.; Lee, J. J.; Bok, K. H.; Kim, J. A.; So, Y. K.; Kim, C. A Colorimetric Chemosensor for the Sequential Recognition of Mercury (II) and Iodide in Aqueous Media. Inorg. Chem. Commun. 2016, 70, 147-152. https://doi.org/10.1016/j.inoche.2016.06.004. | |
dc.relation | Zhong, Z.; Zhang, D.; Li, D.; Zheng, G.; Tian, Z. Turn-on Fluorescence Sensor Based on Naphthalene Anhydride for Hg2+. Tetrahedron 2016, 72 (49), 8050-8054. https://doi.org/10.1016/j.tet.2016.10.033. | |
dc.relation | Xu, W.-J.; Qi, D.-Q.; You, J.-Z.; Hu, F.-F.; Bian, J.-Y.; Yang, C.-X.; Huang, J. Coumarin-Based "Turn-off" Fluorescent Chemosensor with High Selectivity for Cu2+ in Aqueous Solution. J. Mol. Struct. 2015, 1091, 133-137. https://doi.org/10.1016/j.molstruc.2015.02.083. | |
dc.relation | Wei, Y.; Aydin, Z.; Zhang, Y.; Liu, Z.; Guo, M. A Turn-on Fluorescent Sensor for Imaging Labile Fe3+ in Live Neuronal Cells at Subcellular Resolution. ChemBioChem 2012, 13 (11), 1569-1573. https://doi.org/10.1002/cbic.201200202. | |
dc.relation | Samanta, S.; Manna, U.; Ray, T.; Das, G. An Aggregation-Induced Emission (AIE) Active Probe for Multiple Targets: A Fluorescent Sensor for Zn2+ and Al3+ & a Colorimetric Sensor for Cu2+ and F. Dalton Trans. 2015, 44 (43), 18902-18910. https://doi.org/10.1039/C5DT03186A. | |
dc.relation | Cho, H.; Chae, J. B.; Kim, C. A Thiophene-Based Blue-Fluorescent Emitting Chemosensor for Detecting Indium (III) Ion. Inorg. Chem. Commun. 2018, 97, 171-175. https://doi.org/10.1016/j.inoche.2018.09.037. | |
dc.relation | Bakker, E.; Telting-Diaz, M. Electrochemical Sensors. Anal. Chem. 2002, 74 (12), 2781-2800. https://doi.org/10.1021/ac0202278. | |
dc.relation | Gale, P. A.; Caltagirone, C. Fluorescent and Colorimetric Sensors for Anionic Species. Coord. Chem. Rev. 2018, 354, 2-27. https://doi.org/10.1016/j.ccr.2017.05.003. | |
dc.relation | McNaughton, D. A.; Fares, M.; Picci, G.; Gale, P. A.; Caltagirone, C. Advances in Fluorescent and Colorimetric Sensors for Anionic Species. Coord. Chem. Rev. 2021, 427, 213573. https://doi.org/10.1016/j.ccr.2020.213573. | |
dc.relation | Ataman, D.; Akkaya, E. U. Selective Chromogenic Response via Regioselective Binding of Cations: A Novel Approach in Chemosensor Design. Tetrahedron Lett. 2002, 43 (22), 3981-3983. https://doi.org/10.1016/S0040-4039(02)00725-6. | |
dc.relation | Liu, Z.; Zhang, C.; Wang, X.; He, W.; Guo, Z. Design and Synthesis of a Ratiometric Fluorescent Chemosensor for Cu(II) with a Fluorophore Hybridization Approach. Org. Lett. 2012, 14 (17), 4378-4381. https://doi.org/10.1021/ol301849z. | |
dc.relation | Qin, J.; Yang, Z.; Fan, L.; Cheng, X.; Li, T.; Wang, B. Design and Synthesis of a Chemosensor for the Detection of Al3+ Based on ESIPT. Anal. Methods 2014, 6 (18), 7343-7348. https://doi.org/10.1039/C4AY01330A. | |
dc.relation | DiScenza, D. J.; Culton, E.; Verderame, M.; Lynch, J.; Serio, N.; Levine, M. Towards Rational Chemosensor Design through Improved Understanding of Experimental Parameter Variation and Tolerance in Cyclodextrin-Promoted Fluorescence Detection. Chemosensors 2017, 5 (4), 34. https://doi.org/10.3390/chemosensors5040034. | |
dc.relation | K. Sahoo, S. Fluorescent Chemosensors Containing Redox-Active Ferrocene: A Review. Dalton Trans. 2021, 50 (34), 11681-11700. https://doi.org/10.1039/D1DT02077C. | |
dc.relation | Fu, Y.; S. Finney, N. Small-Molecule Fluorescent Probes and Their Design. RSC Adv. 2018, 8 (51), 29051-29061. https://doi.org/10.1039/C8RA02297F. | |
dc.relation | Geddes, C. D.; Lakowicz, J. R. Advanced Concepts in Fluorescence Sensing: Part A: Small Molecule Sensing; Springer Science & Business Media, 2007. | |
dc.relation | Fang, Y.; Dehaen, W. Small-Molecule-Based Fluorescent Probes for f-Block Metal Ions: A New Frontier in Chemosensors. Coord. Chem. Rev. 2021, 427, 213524. https://doi.org/10.1016/j.ccr.2020.213524. | |
dc.relation | Pal, A.; Ranjan Bhatta, S.; Thakur, A. Recent Advances in the Development of Ferrocene Based Electroactive Small Molecules for Cation Recognition: A Comprehensive Review of the Years 2010-2020. Coord. Chem. Rev. 2021, 431, 213685. https://doi.org/10.1016/j.ccr.2020.213685. | |
dc.relation | Yin, J.; Huang, L.; Wu, L.; Li, J.; James, T. D.; Lin, W. Small Molecule Based Fluorescent Chemosensors for Imaging the Microenvironment within Specific Cellular Regions. Chem. Soc. Rev. 2021, 50 (21), 12098-12150. https://doi.org/10.1039/D1CS00645B. | |
dc.relation | Lewis, G. N.; Calvin, M. The Color of Organic Substances. https://pubs.acs.org/doi/pdf/10.1021/cr60081a004 (accessed 2021 -11 -03). https://doi.org/10.1021/cr60081a004. | |
dc.relation | What is Solvatochromism? | The Journal of Physical Chemistry B https://pubs-acs-org.ezproxy.uniandes.edu.co:8443/doi/10.1021/jp1097487 (accessed 2021 -11 -03). | |
dc.relation | Nigam, S.; Rutan, S. Principles and Applications of Solvatochromism. Appl. Spectrosc. 2001, 55 (11), 362A-370A. | |
dc.relation | Reichardt, C.; Welton, T. Solvents and Solvent Effects in Organic Chemistry; John Wiley & Sons, 2010. | |
dc.relation | Afri, M.; Gottlieb, H. E.; Frimer, A. A. Reichardt's Dye: The NMR Story of the Solvatochromic Betaine Dye. Can. J. Chem. 2014, 92 (2), 128-134. https://doi.org/10.1139/cjc-2013-0349. | |
dc.relation | Malkin, J. Photophysical and Photochemical Properties of Aromatic Compounds; CRC Press, 1992. | |
dc.relation | Fowler, F. W.; Katritzky, A. R.; Rutherford, R. J. D. The Correlation of Solvent Effects on Physical and Chemical Properties. J. Chem. Soc. B Phys. Org. 1971, No. 0, 460-469. https://doi.org/10.1039/J29710000460. | |
dc.relation | Abraham, M. H.; Taft, R. W.; Kamlet, M. J. Linear Solvation Energy Relationships. 15. Heterolytic Decomposition of the Tert-Butyl Halides. J. Org. Chem. 1981, 46 (15), 3053-3056. https://doi.org/10.1021/jo00328a012. | |
dc.relation | Catalán, J. Toward a Generalized Treatment of the Solvent Effect Based on Four Empirical Scales: Dipolarity (SdP, a New Scale), Polarizability (SP), Acidity (SA), and Basicity (SB) of the Medium. J. Phys. Chem. B 2009, 113 (17), 5951-5960. https://doi.org/10.1021/jp8095727. | |
dc.relation | Jacques, P. On the Relative Contributions of Nonspecific and Specific Interactions to the Unusual Solvtochromism of a Typical Merocyanine Dye. J. Phys. Chem. 1986, 90 (22), 5535-5539. https://doi.org/10.1021/j100280a012. | |
dc.relation | Machado, C.; Nascimento, M. de G.; Rezende, M. C. Solvato- and Halo-Chromic Behaviour of Some 4-[(N-Methylpyridiniumyl)Methylidineamino]Phenolate Dyes. J. Chem. Soc. Perkin Trans. 2 1994, No. 12, 2539-2544. https://doi.org/10.1039/P29940002539. | |
dc.relation | de Melo, C. E. A.; Nandi, L. G.; Domínguez, M.; Rezende, M. C.; Machado, V. G. Solvatochromic Behavior of Dyes with Dimethylamino Electron-Donor and Nitro Electron-Acceptor Groups in Their Molecular Structure. J. Phys. Org. Chem. 2015, 28 (4), 250-260. https://doi.org/10.1002/poc.3402. | |
dc.relation | Knauer, B. R.; Napier, J. J. The Nitrogen Hyperfine Splitting Constant of the Nitroxide Functional Group as a Solvent Polarity Parameter. The Relative Importance for a Solvent Polarity Parameter of Its Being a Cybotactic Probe vs. Its Being a Model Process. J. Am. Chem. Soc. 1976, 98 (15), 4395-4400. https://doi.org/10.1021/ja00431a010. | |
dc.relation | Achelle, S.; Rodríguez-López, J.; Bure, F.; Robin-le Guen, F. Tuning the Photophysical Properties of Push-Pull Azaheterocyclic Chromophores by Protonation: A Brief Overview of a French-Spanish-Czech Project. Chem. Rec. 2020, 20 (5), 440-451. https://doi.org/10.1002/tcr.201900064. | |
dc.relation | Dong, Y.; Yang, J.; Zhang, H.; Zhan, X.-Y.; He, S.; Shi, Z.-C.; Zhang, X.-M.; Wang, J.-Y. Cobalt-Catalyzed Cycloamination: Synthesis and Photophysical Properties of Polycyclic N-Heterocycles. Org. Lett. 2020, 22 (13), 5151-5156. https://doi.org/10.1021/acs.orglett.0c01753. | |
dc.relation | Krantz, K. E.; Weisflog, S. L.; Frey, N. C.; Yang, W.; Dickie, D. A.; Webster, C. E.; Gilliard Jr., R. J. Planar, Stair-Stepped, and Twisted: Modulating Structure and Photophysics in Pyrene- and Benzene-Fused N-Heterocyclic Boranes. Chem. Eur. J. 2020, 26 (44), 10072-10082. https://doi.org/10.1002/chem.202002118. | |
dc.relation | Needham, L.-M.; Weber, J.; Pearson, C. M.; Do, D. T.; Gorka, F.; Lyu, G.; Bohndiek, S. E.; Snaddon, T. N.; Lee, S. F. A Comparative Photophysical Study of Structural Modifications of Thioflavin T-Inspired Fluorophores. J. Phys. Chem. Lett. 2020, 11 (19), 8406-8416. https://doi.org/10.1021/acs.jpclett.0c01549. | |
dc.relation | Tigreros, A.; Rosero, H.-A.; Castillo, J.-C.; Portilla, J. Integrated Pyrazolo[1,5-a]Pyrimidine-Hemicyanine System as a Colorimetric and Fluorometric Chemosensor for Cyanide Recognition in Water. Talanta 2019, 196, 395-401. https://doi.org/10.1016/j.talanta.2018.12.100. | |
dc.relation | Tigreros, A.; Castillo, J.-C.; Portilla, J. Cyanide Chemosensors Based on 3-Dicyanovinylpyrazolo[1,5-a]Pyrimidines: Effects of Peripheral 4-Anisyl Group Substitution on the Photophysical Properties. Talanta 2020, 215, 120905. https://doi.org/10.1016/j.talanta.2020.120905. | |
dc.relation | Tigreros, A.; Zapata-Rivera, J.; Portilla, J. Pyrazolo[1,5-a]Pyrimidinium Salts for Cyanide Sensing: A Performance and Sustainability Study of the Probes. ACS Sustain. Chem. Eng. 2021, 9 (36), 12058-12069. https://doi.org/10.1021/acssuschemeng.1c01689. | |
dc.relation | Tigreros, A.; Aranzazu, S.-L.; Bravo, N.-F.; Zapata-Rivera, J.; Portilla, J. Pyrazolo[1,5- a ]Pyrimidines-Based Fluorophores: A Comprehensive Theoretical-Experimental Study. RSC Adv. 2020, 10 (65), 39542-39552. https://doi.org/10.1039/D0RA07716J. | |
dc.relation | Bedford, R. B.; Durrant, S. J.; Montgomery, M. Catalyst-Switchable Regiocontrol in the Direct Arylation of Remote C-H Groups in Pyrazolo[1,5-a]Pyrimidines. Angew. Chem. Int. Ed. 2015, 54 (30), 8787-8790. https://doi.org/10.1002/anie.201502150. | |
dc.relation | Wu, Y.-C.; Li, H.-J.; Liu, L.; Wang, D.; Yang, H.-Z.; Chen, Y.-J. Efficient Construction of Pyrazolo[1,5-a]Pyrimidine Scaffold and Its Exploration as a New Heterocyclic Fluorescent Platform. J. Fluoresc. 2008, 18 (2), 357-363. https://doi.org/10.1007/s10895-007-0275-0. | |
dc.relation | Castillo, J.-C.; Portilla, J. RECENT ADVANCES IN THE SYNTHESIS OF NEW PYRAZOLE DERIVATIVES. Targets Heterocycl. Syst. Vol 22 2019, No. 22, 194. https://doi.org/10.17374/targets.2019.22.194. | |
dc.relation | Castillo, J.-C.; Tigreros, A.; Portilla, J. 3-Formylpyrazolo[1,5-a]Pyrimidines as Key Intermediates for the Preparation of Functional Fluorophores. J. Org. Chem. 2018, 83 (18), 10887-10897. https://doi.org/10.1021/acs.joc.8b01571. | |
dc.relation | Tigreros, A.; Portilla, J. Recent Progress in Chemosensors Based on Pyrazole Derivatives. RSC Adv. 2020, 10 (33), 19693-19712. https://doi.org/10.1039/D0RA02394A. | |
dc.relation | Castillo, J.-C.; Rosero, H.-A.; Portilla, J. Simple Access toward 3-Halo- and 3-Nitro-Pyrazolo[1,5- a ]Pyrimidines through a One-Pot Sequence. RSC Adv. 2017, 7 (45), 28483-28488. https://doi.org/10.1039/C7RA04336H. | |
dc.relation | Wilkinson, G.; Rosenblum, M.; Whiting, M. C.; Woodward, R. B. THE STRUCTURE OF IRON BIS-CYCLOPENTADIENYL. J. Am. Chem. Soc. 1952, 74 (8), 2125-2126. https://doi.org/10.1021/ja01128a527. | |
dc.relation | Astruc, D. Why Is Ferrocene so Exceptional? Eur. J. Inorg. Chem. 2016, 2017. https://doi.org/10.1002/ejic.201600983. | |
dc.relation | Connelly, N. G.; Geiger, W. E. Chemical Redox Agents for Organometallic Chemistry. Chem. Rev. 1996, 96 (2), 877-910. https://doi.org/10.1021/cr940053x. | |
dc.relation | Noviandri, I.; Brown, K. N.; Fleming, D. S.; Gulyas, P. T.; Lay, P. A.; Masters, A. F.; Phillips, L. The Decamethylferrocenium/Decamethylferrocene Redox Couple: A Superior Redox Standard to the Ferrocenium/Ferrocene Redox Couple for Studying Solvent Effects on the Thermodynamics of Electron Transfer. J. Phys. Chem. B 1999, 103 (32), 6713-6722. https://doi.org/10.1021/jp991381+. | |
dc.relation | Gagne, R. R.; Koval, C. A.; Lisensky, G. C. Ferrocene as an internal standard for electrochemical measurements https://pubs.acs.org/doi/pdf/10.1021/ic50211a080 (accessed 2021 -06 -19). https://doi.org/10.1021/ic50211a080. | |
dc.relation | Calabrese, J. C.; Cheng, L. T.; Green, J. C.; Marder, S. R.; Tam, W. Molecular Second-Order Optical Nonlinearities of Metallocenes. J. Am. Chem. Soc. 1991, 113 (19), 7227-7232. https://doi.org/10.1021/ja00019a020. | |
dc.relation | Durand, R. J.; Achelle, S.; Gauthier, S.; Cabon, N.; Ducamp, M.; Kahlal, S.; Saillard, J.-Y.; Barsella, A.; Robin-Le Guen, F. Incorporation of a Ferrocene Unit in the -Conjugated Structure of Donor-Linker-Acceptor (D- -A) Chromophores for Nonlinear Optics (NLO). Dyes Pigments 2018, 155, 68-74. https://doi.org/10.1016/j.dyepig.2018.03.029. | |
dc.relation | Molina, P.; Tárraga, A.; Caballero, A. Ferrocene-Based Small Molecules for Multichannel Molecular Recognition of Cations and Anions. Eur. J. Inorg. Chem. 2008, 2008 (22), 3401-3417. https://doi.org/10.1002/ejic.200800474. | |
dc.relation | Antufeva, A. D.; Zhulanov, V. E.; Dmitriev, M. B.; Mokrushin, I. G.; Shklyaeva, E. V.; Abashev, G. G. New Nitrogen Heterocycles Containing a Ferrocene Fragment: Optical and Physicochemical Properties. Russ. J. Gen. Chem. 2017, 87 (3), 470-478. https://doi.org/10.1134/S1070363217030161. | |
dc.relation | Guo, Y.; Wang, S.-Q.; Ding, Z.-Q.; Zhou, J.; Ruan, B.-F. Synthesis, Characterization and Antitumor Activity of Novel Ferrocene Bisamide Derivatives Containing Pyrimidine-Moiety. J. Organomet. Chem. 2017, 851, 150-159. https://doi.org/10.1016/j.jorganchem.2017.09.032. | |
dc.relation | Liang, X.; Guo, P.; Yang, W.; Li, M.; Jiang, C.; Sun, W.; Loh, T.-P.; Jiang, Y. Stereoselective Synthesis of Trifluoromethyl-Substituted 2H-Furan-Amines from Enaminones. Chem. Commun. 2020, 56 (13), 2043-2046. https://doi.org/10.1039/C9CC08582C. | |
dc.relation | Xiang, D.; Noel, J.; Shao, H.; Dupas, G.; Merbouh, N.; Yu, H.-Z. Unique Intramolecular Electronic Communications in Mono-Ferrocenylpyrimidine Derivatives: Correlation between Redox Properties and Structural Nature. Electrochimica Acta 2015, 162, 31-35. https://doi.org/10.1016/j.electacta.2014.10.146. | |
dc.relation | Jia, J.; Cui, Y.; Li, Y.; Sheng, W.; Han, L.; Gao, J. Synthesis, Third-Order Nonlinear Optical Properties and Theoretical Analysis of Vinylferrocene Derivatives. Dyes Pigments 2013, 98 (2), 273-279. https://doi.org/10.1016/j.dyepig.2013.01.028. | |
dc.relation | Huang, H.; Xin, Z.; Yuan, L.; Wang, B.-Y.; Cao, Q.-Y. New Ferrocene-Pyrene Dyads Bearing Amide/Thiourea Hybrid Donors for Anion Recognition. Inorganica Chim. Acta 2018, 483, 425-430. https://doi.org/10.1016/j.ica.2018.08.055. | |
dc.relation | Vidal, M.; Pastenes, C.; Rezende, M. C.; Aliaga, C.; Domínguez, M. The Inverted Solvatochromism of Protonated Ferrocenylethenyl-Pyrimidines: The First Example of the Solvatochromic Reversal of a Hybrid Organic/Inorganic Dye. Org. Chem. Front. 2019, 6 (23), 3896-3901. https://doi.org/10.1039/C9QO01043B. | |
dc.relation | Kaping, S.; Sunn, M.; Singha, L. I.; Vishwakarma, J. N. Ultrasound Assisted Synthesis of Pyrazolo[1,5-a]Pyrimidine-Antipyrine Hybrids and Their Anti-Inflammatory and Anti-Cancer Activities. Eur. J. Chem. 2020, 11 (1), 68-79. https://doi.org/10.5155/eurjchem.11.1.68-79.1942. | |
dc.relation | Kaping, S.; Boiss, I.; Singha, L. I.; Helissey, P.; Vishwakarma, J. N. A Facile, Regioselective Synthesis of Novel 3-(N-Phenylcarboxamide)Pyrazolo[1,5-a]Pyrimidine Analogs in the Presence of KHSO$$_{4}$$in Aqueous Media Assisted by Ultrasound and Their Antibacterial Activities. Mol. Divers. 2016, 20 (2), 379-390. https://doi.org/10.1007/s11030-015-9639-6. | |
dc.relation | Jayasudha, P.; Manivannan, R.; Elango, K. P. Simple Colorimetric Chemodosimeters for Selective Sensing of Cyanide Ion in Aqueous Solution via Termination of ICT Transition by Michael Addition. Sens. Actuators B Chem. 2015, 221, 1441-1448. https://doi.org/10.1016/j.snb.2015.08.017. | |
dc.relation | Tigreros, A.; Castillo, J.-C.; Portilla, J. Cyanide Chemosensors Based on 3-Dicyanovinylpyrazolo[1,5-a]Pyrimidines: Effects of Peripheral 4-Anisyl Group Substitution on the Photophysical Properties. Talanta 2020, 215, 120905. https://doi.org/10.1016/j.talanta.2020.120905. | |
dc.relation | Nam, N. L.; Grandberg, I. I.; Sorokin, V. I. Pyrazolopyrimidines Based on 5-Aminopyrazoles Unsubstituted at the Position 1. Chem. Heterocycl. Compd. 2002, 38 (11), 1371-1374. https://doi.org/10.1023/A:1022186627777. | |
dc.relation | Kong, F.; Liu, R.; Chu, R.; Wang, X.; Xu, K.; Tang, B. A Highly Sensitive Near-Infrared Fluorescent Probe for Cysteine and Homocysteine in Living Cells. Chem. Commun. 2013, 49 (80), 9176-9178. https://doi.org/10.1039/C3CC45519J. | |
dc.relation | Chevalier, A.; Zhang, Y.; Khdour, O. M.; Kaye, J. B.; Hecht, S. M. Mitochondrial Nitroreductase Activity Enables Selective Imaging and Therapeutic Targeting. J. Am. Chem. Soc. 2016, 138 (37), 12009-12012. https://doi.org/10.1021/jacs.6b06229. | |
dc.relation | Huang, Y.; Ru, H.; Bao, B.; Yu, J.; Li, J.; Zang, Y.; Lu, W. The Design of a Novel Near-Infrared Fluorescent HDAC Inhibitor and Image of Tumor Cells. Bioorg. Med. Chem. 2020, 28 (17), 115639. https://doi.org/10.1016/j.bmc.2020.115639. | |
dc.relation | Reichardt, C. Solvatochromic Dyes as Solvent Polarity Indicators. Chem. Rev. 1994, 94 (8), 2319-2358. https://doi.org/10.1021/cr00032a005. | |
dc.relation | Aliaga, C.; Domínguez, M.; Rojas, P.; Rezende, M. C. A Comparison of Multiparametric Methods for the Interpretation of Solvent-Dependent Chemical Processes. J. Mol. Liq. 2020, 312, 113362. https://doi.org/10.1016/j.molliq.2020.113362. | |
dc.relation | Sengül, Ü. Comparing Determination Methods of Detection and Quantification Limits for Aflatoxin Analysis in Hazelnut. J. Food Drug Anal. 2016, 24 (1), 56-62. https://doi.org/10.1016/j.jfda.2015.04.009. | |
dc.relation | Sola, A.; Tárraga, A.; Molina, P. The Ferrocene-Pyrylium Dyad as a Selective Colorimetric Chemodosimeter for the Toxic Cyanide and Hydrogen Sulfide Anions in Water. Org. Biomol. Chem. 2014, 12 (16), 2547-2551. https://doi.org/10.1039/C4OB00157E. | |
dc.relation | Kim, S. M.; Kang, M.; Choi, I.; Lee, J. J.; Kim, C. A Highly Selective Colorimetric Chemosensor for Cyanide and Sulfide in Aqueous Solution: Experimental and Theoretical Studies. New J. Chem. 2016, 40 (9), 7768-7778. https://doi.org/10.1039/C6NJ01832G. | |
dc.relation | Rao, P. G.; Saritha, B.; Rao, T. S. Highly Selective Reaction Based Colorimetric and Fluorometric Chemosensors for Cyanide Detection via ICT off in Aqueous Solution. J. Photochem. Photobiol. Chem. 2019, 372, 177-185. https://doi.org/10.1016/j.jphotochem.2018.12.018. | |
dc.relation | Qian, G.; Li, X.; Wang, Z. Y. Visible and Near-Infrared Chemosensor for Colorimetric and Ratiometric Detection of Cyanide. J. Mater. Chem. 2009, 19 (4), 522-530. https://doi.org/10.1039/B813478B. | |
dc.relation | Babu, B.; Mack, J.; Nyokong, T. Naked Eye and Colorimetric Detection of Cyanide with a 1,3-Diethyl-2-Thiobarbituric Acid Substituted Ferrocene Chemosensor. ChemistrySelect 2021, 6 (7), 1448-1452. https://doi.org/10.1002/slct.202100163. | |
dc.relation | WHO. Guidelines for Drinking-Water Quality, Fourth Edition. 564. | |
dc.rights | Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores. | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Design and synthesis of chemosensors based on 7-ferrocenylpyrazolo[1,5-a]pyrimidines for the detection of H+ and CN- | |
dc.type | Trabajo de grado - Maestría | |