dc.contributorNúñez Castro, Haydemar María
dc.contributorGiraldo Trujillo, Luis Felipe
dc.contributorLozano Garzón, Carlos Andrés
dc.contributorCOMIT
dc.creatorZapata Conforto, Carlos Leopoldo
dc.date.accessioned2022-06-14T18:17:23Z
dc.date.available2022-06-14T18:17:23Z
dc.date.created2022-06-14T18:17:23Z
dc.date.issued2022-05-10
dc.identifierhttp://hdl.handle.net/1992/57942
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.description.abstractEn el presente trabajo se desarrolló una arquitectura neuro-difusa usando datos de imágenes de satélite de monitoreo de cultivos en el contexto de una sola clase. Para ello, se entrenaron, evaluaron y comprobaron diferentes autocodificadores usando técnicas de deep learning y un clasificador difuso. Aparte de aplicar este enfoque en el contexto de monitoreo de cultivos, se buscó comprobar su aplicación en dos contextos diferentes y comparar su rendimiento contra un autocodificador sin lógica difusa y modelos entrenados con los algoritmos de machine learning Isolation Forest y One Class SVM.
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ingeniería de Información
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Sistemas y Computación
dc.relationAmosov, O. S., Ivanov, Y. S. & Amosova, S. G. (2019). Recognition of Abnormal Traffic Using Deep Neural Networks and Fuzzy Logic. 2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), 01-05. https://doi. org/10.1109/FarEastCon.2019.8934327
dc.relationBabuska, R. (1998). Fuzzy Modeling for Control (1st). Kluwer Academic Publishers.
dc.relationBanerjee, S., Singh, S., Chakraborty, A., Das, A. & Bag, R. (2020). Melanoma Diagnosis Using Deep Learning and Fuzzy Logic. Diagnostics, 10, 577-602. https://doi.org/ 10.3390/diagnostics10080577
dc.relationBanerjee, S., Bouzefrane, S. & Mühlethaler, P. (2017). Mobility Prediction in Vehicular Networks: An Approach Through Hybrid Neural Networks Under Uncertainty. En S. Bouzefrane, S. Banerjee, F. Sailhan, S. Boumerdassi & E. Renault (Eds.), Mobile, Secure, and Programmable Networking (pp. 178-194). Springer International Publishing.
dc.relationBedoui, A. & Et-tolba, M. (2020). A Neuro-Fuzzy based detection approach for HARQCC in FBMC-OQAM systems. 2020 9th IFIP International Conference on Performance Evaluation and Modeling in Wireless Networks (PEMWN), 1-7. https://doi.org/10. 23919/PEMWN50727.2020.9293073
dc.relationBhandari, A., Kumar, A. & Singh, G. (2012). Feature Extraction using Normalized Difference Vegetation Index (NDVI): A Case Study of Jabalpur City [2nd International Conference on Communication, Computing & Security [ICCCS-2012]]. Procedia Technology, 6, 612-621. https://doi.org/https://doi.org/10.1016/j.protcy.2012.10.074
dc.relationBorisov, V. V. & Korshunova, K. P. (2019). Multiclass Classification Based on the Convolutional Fuzzy Neural Networks. En S. O. Kuznetsov & A. I. Panov (Eds.), Artificial Intelligence (pp. 226-233). Springer International Publishing.
dc.relationChandrasekar, K., Sesha Sai, M. V. R., Roy, P. S. & Dwevedi, R. S. (2010). Land Surface Water Index (LSWI) Response to Rainfall and NDVI Using the MODIS Vegetation Index Product. Int. J. Remote Sens., 31(15), 3987-4005.
dc.relationChen, D., Zhang, X., Wang, L. & Han, Z. (2018). Prediction of Cloud Resources Demand Based on Fuzzy Deep Neural Network. 2018 IEEE Global Communications Conference (GLOBECOM), 1-5. https://doi.org/10.1109/GLOCOM.2018.8647765
dc.relationChuvieco, E. (1990). Fundamentos de la teledetección espacial. Ediciones Rialp, S.A.
dc.relationCosta, B. & Jain, J. (2019). Fuzzy Deep Stack of Autoencoders for Dealing with Data Uncertainty. 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1-6. https://doi.org/10.1109/FUZZ-IEEE.2019.8859022
dc.relationDabare, R., Wong, K. W., Shiratuddin, M. F. & Koutsakis, P. (2019). Fuzzy Deep Neural Network for Classification of Overlapped Data. En T. Gedeon, K. W. Wong & M. Lee (Eds.), Neural Information Processing (pp. 633-643). Springer International Publishing.
dc.relationDutta, A., Nayak, A., Aditya, Panda, R. R. & Nagwani, N. K. (2020). A Neuro Fuzzy System Based Inflation Prediction of Agricultural Commodities. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 1-6. https://doi.org/10.1109/ICCCNT49239.2020.9225453
dc.relationEnderton, H. (1977). Elements of Set Theory. Elsevier Science. https://books.google.com.co/books?id=JlR-Ehk35XkC
dc.relationFletcher, S. & Islam, M. (2018). Comparing sets of patterns with the Jaccard index. Australasian Journal of Information Systems, 22. https://doi.org/10.3127/ajis.v22i0.1538
dc.relationGamal, O., Cai, X. & Roth, H. (2020). Learning from Fuzzy System Demonstration: Autonomous Navigation of Mobile Robot in Static Indoor Environment using Multimodal Deep Learning. 2020 24th International Conference on System Theory, Control and Computing (ICSTCC), 218-225. https://doi.org/10.1109/ICSTCC50638.2020.9259786
dc.relationGe, C., Liu, Z., Fang, L., Ling, H., Zhang, A. & Yin, C. (2021). A Hybrid Fuzzy Convolutional Neural Network Based Mechanism for Photovoltaic Cell Defect Detection With Electroluminescence Images. IEEE Transactions on Parallel and Distributed Systems, 32(7), 1653-1664. https://doi.org/10.1109/TPDS.2020.3046018
dc.relationGéron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems (2nd). O'Reilly Media.
dc.relationGhazaryan, G., Skakun, S., K¿nig, S., Rezaei, E. E., Siebert, S. & Dubovyk, O. (2020). Crop Yield Estimation Using Multi-Source Satellite Image Series and Deep Learning. IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, 5163-5166. https://doi.org/10.1109/IGARSS39084.2020.9324027
dc.relationHatri, C. E. & Boumhidi, J. (2017). Fuzzy deep learning based urban traffic incident detection. 2017 Intelligent Systems and Computer Vision (ISCV), 1-6. https://doi.org/10.1109/ISACV.2017.8054903
dc.relationHinton, G. E., Osindero, S. & Teh, Y.W. (2006). A Fast Learning Algorithm for Deep Belief Nets. Neural Computation, 18, 1527-1554.
dc.relationHuete, A., Didan, K., Miura, T., Rodriguez, E., Gao, X. & Ferreira, L. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices [The Moderate Resolution Imaging Spectroradiometer (MODIS): a new generation of Land Surface Monitoring]. Remote Sensing of Environment, 83(1), 195-213. https://doi.org/https://doi.org/10.1016/S0034-4257(02)00096-2
dc.relationHuete, A. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295-309. https://doi.org/https://doi.org/10.1016/0034-4257(88)90106-X
dc.relationJang, J. .-. R. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665-685. https://doi.org/10.1109/21.256541
dc.relationJiang, Z., Huete, A. R., Didan, K. & Miura, T. (2008). Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment, 112(10), 3833-3845. https://doi.org/https://doi.org/10.1016/j.rse.2008.06.006
dc.relationJordan, C. F. (1969). Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology, 50(4), 663-666. http://www.jstor.org/stable/1936256
dc.relationKhan, S. S. & Madden, M. G. (2010). A Survey of Recent Trends in One Class Classification. En L. Coyle & J. Freyne (Eds.), Artificial Intelligence and Cognitive Science (pp. 188-197). Springer Berlin Heidelberg.
dc.relationKingma, D. & Ba, J. (2014). Adam: A Method for Stochastic Optimization. International Conference on Learning Representations.
dc.relationKingma, D. P. & Welling, M. (2014). Auto-Encoding Variational Bayes.
dc.relationKussul, N., Lavreniuk, M. & Shumilo, L. (2020). Deep Recurrent Neural Network for Crop Classification Task Based on Sentinel-1 and Sentinel-2 Imagery. IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, 6914-6917. https://doi.org/10.1109/IGARSS39084.2020.9324699
dc.relationKussul, N., Lavreniuk, M., Skakun, S. & Shelestov, A. (2017). Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data. IEEE Geoscience and Remote Sensing Letters, 14(5), 778-782. https://doi.org/10.1109/LGRS.2017.2681128
dc.relationLi, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A. & Talwalkar, A. (2018). Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization. Journal of Machine Learning Research, 18(185), 1-52. http://jmlr.org/papers/v18/16-558.html
dc.relationLiu, F. T., Ting, K. & Zhou, Z.-H. (2009). Isolation Forest, 413-422. https://doi.org/10.1109/ICDM.2008.17
dc.relationLozano-Garzon, C., Bravo-Córdoba, G., Castro, H., González-Rodríguez, G., Niño, D., Nuñez, H., Pardo, C., Vivas, A., Castro, Y., Medina, J., Motta, L. C., Rojas, J. R. & Suárez, L. I. (2022). Remote Sensing and Machine Learning Modeling to Support the Identification of Sugarcane Crops. IEEE Access, 10, 17542-17555. https://doi.org/10.1109/ACCESS.2022.3148691
dc.relationMonsefi, A. K., Zakeri, B., Samsam, S. & Khashehchi, M. (2019). Performing Software Test Oracle Based on Deep Neural Network with Fuzzy Inference System. En L. Grandinetti, S. L. Mirtaheri & R. Shahbazian (Eds.), High-Performance Computing and Big Data Analysis (pp. 406-417). Springer International Publishing.
dc.relationMunoz-Mari, J., Bruzzone, L. & Camps-Valls, G. (2007). A Support Vector Domain Description Approach to Supervised Classification of Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, 45(8), 2683-2692. https://doi.org/10.1109/TGRS.2007.897425
dc.relationNguyen, T. L., Kavuri, S. & Lee, M. (2019). A multimodal convolutional neuro-fuzzy network for emotion understanding of movie clips. Neural Networks, 118. https://doi.org/10.1016/j.neunet.2019.06.010
dc.relationOh, D. Y. & Yun, I. D. (2018). Residual Error Based Anomaly Detection Using Auto-Encoder in SMD Machine Sound. Sensors, 18(5). https://doi.org/10.3390/s18051308
dc.relationO¿Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., Invernizzi, L. y col. (2019). Keras-Tuner. https://github.com/keras-team/keras-tuner
dc.relationOu, C., Ouali, C., Bedawi, S. M. & Karray, F. (2018). Driver Behavior Monitoring Using Tools of Deep Learning and Fuzzy Inferencing. 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1-7. https://doi.org/10.1109/FUZZ-IEEE.2018.8491511
dc.relationPardo Fuquen, C., Castro Barrera, H. E. & Nuñez Castro, H. (2020). Metodología para el monitoreo de cultivos a partir de imágenes satelitales con Machine Learning. Universidad de Los Andes.
dc.relationPark, S., Lee, S. J., Weiss, E. & Motai, Y. (2016). Intra- and Inter-Fractional Variation Prediction of Lung Tumors Using Fuzzy Deep Learning. IEEE Journal of Translational Engineering in Health and Medicine, 4, 1-12. https://doi.org/10.1109/JTEHM.2016.2516005
dc.relationRovetta, S., Mnasri, Z., Masulli, F.&Cabri, A. (2021). Anomaly detection based on intervalvalued fuzzy sets: Application to rare sound event detection.
dc.relationRussell, S. J. & Norvig, P. (2022). Artificial Intelligence: A Modern Approach (4th Edition - Global Edition). Pearson.
dc.relationRutkowski, L. (2004). Flexible Neuro-Fuzzy Systems: Structures, Learning and Performance Evaluation (Kluwer International Series in Engineering and Computer Science). Kluwer Academic Publishers.
dc.relationSchölkopf, B.,Williamson, R., Smola, A., Shawe-Taylor, J. & Platt, J. (1999). Support Vector Method for Novelty Detection. NIPS, 12, 582-588.
dc.relationShearer, C. (2000). The CRISP-DM model: the new blueprint for data mining. Journal of data warehousing, 5(4), 13-22.
dc.relationSimonyan, K. & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Image Recognition.
dc.relationSubhashini, L., Li, Y., Zhang, J. & Atukorale, A. S. (2020). Integration of Fuzzy and Deep Learning in Three-Way Decisions. 2020 International Conference on Data Mining Workshops (ICDMW), 71-78. https://doi.org/10.1109/ICDMW51313.2020.00019
dc.relationTuntas, R. & Dikici, B. (2017). An ANFIS model to prediction of corrosion resistance of coated implant materials. Neural Computing and Applications, 28, 3617-3627. https://doi.org/10.1007/s00521-017-3103-8
dc.relationVaiyapuri, T. & Binbusayyis, A. (2020). Application of deep autoencoder as an one-class classifier for unsupervised network intrusion detection: a comparative evaluation. Peer J Computer Science, 6, e327. https://doi.org/10.7717/peerj-cs.327
dc.relationVarghese, E., Thampi, S. M. & Berretti, S. (2020). A Psychologically Inspired Fuzzy Cognitive Deep Learning Framework to Predict Crowd Behavior. IEEE Transactions on Affective Computing, 1-1. https://doi.org/10.1109/TAFFC.2020.2987021
dc.relationWang, X., Zhang, Y. & Xue, Z. (2019). Fuzzy Sliding Mode Control Based on RBF Neural Network for AUV Path Tracking. En H. Yu, J. Liu, L. Liu, Z. Ju, Y. Liu & D. Zhou (Eds.), Intelligent Robotics and Applications (pp. 637-648). Springer International Publishing.
dc.relationWarner, J., Sexauer, J., scikit-fuzzy, twmeggs, alexsavio, Unnikrishnan, A., Castelao, G., Pontes, F. A., Uelwer, T., pd2f, laurazh andFernando Batista, alexbuy, den Broeck, W. V., Song, W., Badger, T. G., Pérez, R. A. M., Power, J. F., Mishra, H., Trullols, G. O. & Horteborn, A. (2019). Scikit-Fuzzy. Consultado el 10 de abril de 2022, desde https://doi.org/10.5281/zenodo.3541386
dc.relationXi, Z. & Panoutsos, G. (2018). Interpretable Machine Learning: Convolutional Neural Networks with RBF Fuzzy Logic Classification Rules. 2018 International Conference on Intelligent Systems (IS), 448-454. https://doi.org/10.1109/IS.2018.8710470
dc.relationZadeh, L. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
dc.relationZadeh, L. A. (1973). Outline of a New Approach to the Analysis of Complex Systems and Decision Processes. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(1), 28-44. https://doi.org/10.1109/TSMC.1973.5408575
dc.relationZhang, D., Yao, L., Wang, S., Chen, K., Yang, Z. & Benatallah, B. (2018). Fuzzy Integral Optimization with Deep Q-Network for EEG-Based Intention Recognition. En D. Phung, V. S. Tseng, G. I. Webb, B. Ho, M. Ganji & L. Rashidi (Eds.), Advances in Knowledge Discovery and Data Mining (pp. 156-168). Springer International Publishing.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleSistemas híbridos inteligentes basados en lógica difusa y aprendizaje profundo
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución