dc.contributorLozano Garzón, Carlos Andrés
dc.contributorMontoya Orozco, Germán Adolfo
dc.contributorCOMIT
dc.creatorJaimes Bastidas, Elina Valentina
dc.date.accessioned2022-07-19T13:18:12Z
dc.date.available2022-07-19T13:18:12Z
dc.date.created2022-07-19T13:18:12Z
dc.date.issued2022-07-14
dc.identifierhttp://hdl.handle.net/1992/58981
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.description.abstractEl Internet de las Cosas (IoT) es uno de los campos tecnológicos emergentes con mayor evolución en los últimos años. Dado este incremento exponencial, se han plantado nuevos retos de seguridad en cuanto a las redes IoT, puntualmente sobre los ataques que puedan propagarse en la misma. En este trabajo se implementa un modelo híbrido que combina técnicas de Machine Learning y Deep Learning con el propósito de detectar ataques de tipo DoS de manera temprana. Las técnicas que componen el modelo son una Red Neuronal Convolucional y Random Forest. El modelo híbrido presentó un desempeño favorable, clasificando satisfactoriamente más del 99% de los ataques y refinando la clasificación de trazas etiquetadas erróneamente en un 41%.
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherIngeniería de Sistemas y Computación
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Sistemas y Computación
dc.relationC. A. de Souza, C. B. Westphall, R. B. Machado, J. B. M. Sobral, and G. dos S. Vieira, "Hybrid approach to intrusion detection in fog-based IoT environments," Computer Networks, vol. 180, p. 107417, Oct. 2020, doi: 10.1016/J.COMNET.2020.107417.
dc.relationC. Hallum, "New research shows IoT and OT innovation is critical to business but comes with significant risks - Microsoft Security Blog," Microsoft Security, Dec. 08, 2021. https://www.microsoft.com/security/blog/2021/12/08/new-research-shows-iotand-ot-innovation-is-critical-to-business-but-comes-with-significant-risks/
dc.relationA. Hameed and A. Alomary, "Security issues in IoT: A survey," 2019 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies, 3ICT 2019, Sep. 2019, doi: 10.1109/3ICT.2019.8910320.
dc.relationV. M. Brea Sánchez, "Internet de las cosas-Horizonte 2050," Jul. 2018
dc.relationJ. Salazar and Y. S. Silvestre, "Internet de las cosas." [Online]. Available: http://www.techpedia.eu
dc.relationA. Reed, L. S. Dooley, and K. Mostéfaoui, "A Reliable Real-Time Slow DoS Detection Framework for Resource-Constrained IoT Networks," Soraya, pp. 7-11, 2022, doi: 10.1109/GLOBECOM46510.2021.9685612.
dc.relation¿¿Qué es un ataque bajo y lento? Definición de ataque DDoS bajo y lento, Cloudflare. https://www.cloudflare.com/es-es/learning/ddos/ddos-low-and-slowattack/
dc.relationC. Chique Rodriguez, "Maquina de Soporte Vectorial (SVM)," Medium, Aug. 02, 2020. https://medium.com/@csarchiquerodriguez/maquina-de-soporte-vectorialsvm-92e9f1b1b1ac
dc.relationJ. A. Rodrigo, "Arboles de decision, Random Forest, Gradient Boosting y C5.0," cienciadedatos.net, Oct. 2020. https://www.cienciadedatos.net/documentos/33_arboles_de_prediccion_bagging_r andom_forest_boosting
dc.relationM. A, ¿Qué es la regresión logística?, DataScientest. https://datascientest.com/es/que-es-la-regresion-logistica
dc.relation¿Qué es el algoritmo de k vecinos más cercanos?, IBM. https://www.ibm.com/coes/topics/knn
dc.relation"K-Nearest Neighbor (KNN) Algorithm for Machine Learning," Javatpoint. https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-machine-learning
dc.relationM. Rahman and M. Duran, "Deep Learning in Instructional Analysis, Design, Development, Implementation, and Evaluation (ADDIE)," IGI Global, pp. 126¿141, Jan. 2022, doi: 10.4018/978-1-7998-7776-9.CH005.
dc.relation¿What is Deep Neural Network (DNN),? IGI Global. https://www.igiglobal.com/dictionary/deep-learning-on-edge/83744
dc.relationP. Pedankar, "A Quick Glance of DNN Neural Network," EDUCBA. https://www.educba.com/dnn-neural-network/
dc.relation¿What is convolutional neural network? ,Techtarget. https://www.techtarget.com/searchenterpriseai/definition/convolutional-neuralnetwork
dc.relationS. Saxena, "Introduction to Long Short Term Memory (LSTM)," Analytics Vidhya, Mar. 16, 2021. https://www.analyticsvidhya.com/blog/2021/03/introduction-to-longshort-term-memory-lstm/
dc.relationR. Blagus and L. Lusa, "SMOTE for high-dimensional class-imbalanced data," BMC Bioinformatics, vol. 14, Mar. 2013, doi: 10.1186/1471-2105-14-106.
dc.relationS. Goyal, "Evaluation Metrics for Classification Models," Medium | Analytics Vidhya, Jul. 20, 2021. https://medium.com/analytics-vidhya/evaluation-metrics-forclassification-models-e2f0d8009d69
dc.relationM. Setia, "Log Loss - Logistic Regression's Cost Function used in Logistic Regression," Analytics Vidhya, Nov. 09, 2020. https://www.analyticsvidhya.com/blog/2020/11/binary-cross-entropy-aka-log-lossthe-cost-function-used-in-logistic-regression/
dc.relation"Performance Measures: Cohen's Kappa statistic," The Data Scientist. https://thedatascientist.com/performance-measures-cohens-kappa-statistic/
dc.relation"The UNSW-NB15 Dataset ," UNSW Sydney, Jun. 02, 2021. https://research.unsw.edu.au/projects/unsw-nb15-dataset
dc.relationH. A. Ahmed, A. Hameed, and N. Z. Bawany, "Network intrusion detection using oversampling technique and machine learning algorithms," PeerJ Computer Science, vol. 8, p. e820, Jan. 2022, doi: 10.7717/PEERJ-CS.820/FIG-2.
dc.relationL. A. Polania, "Evaluación de modelos de Machine Learning para Sistemas de Detección de Intrusos en Redes IoT," 2021.
dc.relationR. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-Nemrat, and S. Venkatraman, "Deep Learning Approach for Intelligent Intrusion Detection System," IEEE Access, vol. 7, pp. 41525¿41550, 2019, doi: 10.1109/ACCESS.2019.2895334
dc.relationE. V. Jaimes Bastidas, "Detección de amenazas en Redes IoT empleando modelo híbrido de Machine Learning y Deep Learning," 2022.
dc.relationE. D. aferovi, A. Sokol, A. A. Almisreb, and S. Mohd Norzeli, "DoS and DDoS vulnerability of IoT: A review," Sustainable Engineering and Innovation, vol. 1, no. 1, pp. 43-48, Jun. 2019, doi: 10.37868/SEI.V1I1.36.
dc.relation"tab2img · PyPI." https://pypi.org/project/tab2img/
dc.rightsAtribución-CompartirIgual 4.0 Internacional
dc.rightsAtribución-CompartirIgual 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleDetección de amenazas en redes IoT empleando modelo híbrido de Machine Learning y Deep Learning
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución