dc.contributor | Lozano Garzón, Carlos Andrés | |
dc.contributor | Montoya Orozco, Germán Adolfo | |
dc.contributor | COMIT | |
dc.creator | Jaimes Bastidas, Elina Valentina | |
dc.date.accessioned | 2022-07-19T13:18:12Z | |
dc.date.available | 2022-07-19T13:18:12Z | |
dc.date.created | 2022-07-19T13:18:12Z | |
dc.date.issued | 2022-07-14 | |
dc.identifier | http://hdl.handle.net/1992/58981 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.description.abstract | El Internet de las Cosas (IoT) es uno de los campos tecnológicos emergentes con mayor
evolución en los últimos años. Dado este incremento exponencial, se han plantado nuevos
retos de seguridad en cuanto a las redes IoT, puntualmente sobre los ataques que puedan
propagarse en la misma. En este trabajo se implementa un modelo híbrido que combina
técnicas de Machine Learning y Deep Learning con el propósito de detectar ataques de
tipo DoS de manera temprana. Las técnicas que componen el modelo son una Red
Neuronal Convolucional y Random Forest. El modelo híbrido presentó un desempeño
favorable, clasificando satisfactoriamente más del 99% de los ataques y refinando la
clasificación de trazas etiquetadas erróneamente en un 41%. | |
dc.language | spa | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Ingeniería de Sistemas y Computación | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Departamento de Ingeniería Sistemas y Computación | |
dc.relation | C. A. de Souza, C. B. Westphall, R. B. Machado, J. B. M. Sobral, and G. dos S.
Vieira, "Hybrid approach to intrusion detection in fog-based IoT environments," Computer Networks, vol. 180, p. 107417, Oct. 2020, doi:
10.1016/J.COMNET.2020.107417. | |
dc.relation | C. Hallum, "New research shows IoT and OT innovation is critical to business but
comes with significant risks - Microsoft Security Blog," Microsoft Security, Dec. 08,
2021. https://www.microsoft.com/security/blog/2021/12/08/new-research-shows-iotand-ot-innovation-is-critical-to-business-but-comes-with-significant-risks/ | |
dc.relation | A. Hameed and A. Alomary, "Security issues in IoT: A survey," 2019 International
Conference on Innovation and Intelligence for Informatics, Computing, and Technologies, 3ICT 2019, Sep. 2019, doi: 10.1109/3ICT.2019.8910320. | |
dc.relation | V. M. Brea Sánchez, "Internet de las cosas-Horizonte 2050," Jul. 2018 | |
dc.relation | J. Salazar and Y. S. Silvestre, "Internet de las cosas." [Online]. Available:
http://www.techpedia.eu | |
dc.relation | A. Reed, L. S. Dooley, and K. Mostéfaoui, "A Reliable Real-Time Slow DoS
Detection Framework for Resource-Constrained IoT Networks," Soraya, pp. 7-11,
2022, doi: 10.1109/GLOBECOM46510.2021.9685612. | |
dc.relation | ¿¿Qué es un ataque bajo y lento? Definición de ataque DDoS bajo y lento,
Cloudflare. https://www.cloudflare.com/es-es/learning/ddos/ddos-low-and-slowattack/ | |
dc.relation | C. Chique Rodriguez, "Maquina de Soporte Vectorial (SVM)," Medium, Aug. 02,
2020. https://medium.com/@csarchiquerodriguez/maquina-de-soporte-vectorialsvm-92e9f1b1b1ac | |
dc.relation | J. A. Rodrigo, "Arboles de decision, Random Forest, Gradient Boosting y C5.0,"
cienciadedatos.net, Oct. 2020.
https://www.cienciadedatos.net/documentos/33_arboles_de_prediccion_bagging_r
andom_forest_boosting | |
dc.relation | M. A, ¿Qué es la regresión logística?, DataScientest.
https://datascientest.com/es/que-es-la-regresion-logistica | |
dc.relation | ¿Qué es el algoritmo de k vecinos más cercanos?, IBM. https://www.ibm.com/coes/topics/knn | |
dc.relation | "K-Nearest Neighbor (KNN) Algorithm for Machine Learning," Javatpoint.
https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-machine-learning | |
dc.relation | M. Rahman and M. Duran, "Deep Learning in Instructional Analysis, Design,
Development, Implementation, and Evaluation (ADDIE)," IGI Global, pp. 126¿141,
Jan. 2022, doi: 10.4018/978-1-7998-7776-9.CH005. | |
dc.relation | ¿What is Deep Neural Network (DNN),? IGI Global. https://www.igiglobal.com/dictionary/deep-learning-on-edge/83744 | |
dc.relation | P. Pedankar, "A Quick Glance of DNN Neural Network," EDUCBA.
https://www.educba.com/dnn-neural-network/ | |
dc.relation | ¿What is convolutional neural network? ,Techtarget.
https://www.techtarget.com/searchenterpriseai/definition/convolutional-neuralnetwork | |
dc.relation | S. Saxena, "Introduction to Long Short Term Memory (LSTM)," Analytics Vidhya,
Mar. 16, 2021. https://www.analyticsvidhya.com/blog/2021/03/introduction-to-longshort-term-memory-lstm/ | |
dc.relation | R. Blagus and L. Lusa, "SMOTE for high-dimensional class-imbalanced data," BMC Bioinformatics, vol. 14, Mar. 2013, doi: 10.1186/1471-2105-14-106. | |
dc.relation | S. Goyal, "Evaluation Metrics for Classification Models," Medium | Analytics Vidhya,
Jul. 20, 2021. https://medium.com/analytics-vidhya/evaluation-metrics-forclassification-models-e2f0d8009d69 | |
dc.relation | M. Setia, "Log Loss - Logistic Regression's Cost Function used in Logistic
Regression," Analytics Vidhya, Nov. 09, 2020.
https://www.analyticsvidhya.com/blog/2020/11/binary-cross-entropy-aka-log-lossthe-cost-function-used-in-logistic-regression/ | |
dc.relation | "Performance Measures: Cohen's Kappa statistic," The Data Scientist.
https://thedatascientist.com/performance-measures-cohens-kappa-statistic/ | |
dc.relation | "The UNSW-NB15 Dataset ," UNSW Sydney, Jun. 02, 2021.
https://research.unsw.edu.au/projects/unsw-nb15-dataset | |
dc.relation | H. A. Ahmed, A. Hameed, and N. Z. Bawany, "Network intrusion detection using
oversampling technique and machine learning algorithms," PeerJ Computer
Science, vol. 8, p. e820, Jan. 2022, doi: 10.7717/PEERJ-CS.820/FIG-2. | |
dc.relation | L. A. Polania, "Evaluación de modelos de Machine Learning para Sistemas de
Detección de Intrusos en Redes IoT," 2021. | |
dc.relation | R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-Nemrat, and
S. Venkatraman, "Deep Learning Approach for Intelligent Intrusion Detection System," IEEE Access, vol. 7, pp. 41525¿41550, 2019, doi:
10.1109/ACCESS.2019.2895334 | |
dc.relation | E. V. Jaimes Bastidas, "Detección de amenazas en Redes IoT empleando modelo híbrido de Machine Learning y Deep Learning," 2022. | |
dc.relation | E. D. aferovi, A. Sokol, A. A. Almisreb, and S. Mohd Norzeli, "DoS and DDoS vulnerability of IoT: A review," Sustainable Engineering and Innovation, vol. 1, no.
1, pp. 43-48, Jun. 2019, doi: 10.37868/SEI.V1I1.36. | |
dc.relation | "tab2img · PyPI." https://pypi.org/project/tab2img/ | |
dc.rights | Atribución-CompartirIgual 4.0 Internacional | |
dc.rights | Atribución-CompartirIgual 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-sa/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Detección de amenazas en redes IoT empleando modelo híbrido de Machine Learning y Deep Learning | |
dc.type | Trabajo de grado - Pregrado | |