dc.contributor | Gómez Castro, Camilo Hernando | |
dc.contributor | Cuéllar Usaquén, Daniel Hernando | |
dc.contributor | Ulmer, Marlin | |
dc.contributor | Alvarez Martínez, David | |
dc.contributor | COPA: Center for Optimization and Applied Probability | |
dc.creator | Cardona Peláez, Sebastián | |
dc.date.accessioned | 2022-05-03T13:38:05Z | |
dc.date.available | 2022-05-03T13:38:05Z | |
dc.date.created | 2022-05-03T13:38:05Z | |
dc.date.issued | 2022-04-29 | |
dc.identifier | http://hdl.handle.net/1992/57061 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.description.abstract | In this article, we investigate a heterogeneous Two-Echelon fleet approach for solving the same-day delivery problem. We develop an intraroute replenishment improvement for a state-of-the-art solution approach. We determine the best cost-effective combination of PFA and fleet configuration to maintain specific service levels in a real case study in Bogotá, Colombia. In the lack of data, we create an instance generator that responds to real-life geographical distribution. Compared to the base algorithm, the intraroute replenishment approach can save an average of 4 minutes per delivery while, at least, maintaining operational cost. | |
dc.language | eng | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Maestría en Ingeniería Industrial | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Departamento de Ingeniería Industrial | |
dc.relation | [1]Agra, A., Christiansen, M., Delgado, A., Hvattum, L.M. (2015). A maritime inventory routing problem with stochastic sailing and port times. Computers & Operations Research 61: 18-30. | |
dc.relation | [2]Attanasio, A., Bregman, J., Ghiani, G., Manni, E., (2007). Real-time fleet management at Ecourier ltd. Dynamic Fleet Management 38: 219-238. | |
dc.relation | [3]Azi, N., Gendreau, M., -Y. Potvin, J. (2012). A dynamic vehicle routing problem with multiple delivery routes. Annals of Operations Research 199(1): 103-112. | |
dc.relation | [4]Baldacci, R., Mingozzi, A. (2009). A unified exact method for solving different classes of vehicle routing problems. Mathematical Programming, 120 (2): 347-380. | |
dc.relation | [5]Basilico, N., Chung, T.H., Carpin, S., (2016). Distributed online patrolling with multi-agent teams of sentinels and searchers. Distributed Autonomous Robotic Systems: The 12th International Symposium, N.-Y. Chong and Y.-J. Cho (eds), Springer, Tokyo, Japan, 2016, pp. 3-16. DOI: 10.1007/978-4-431-55879-8\_1. | |
dc.relation | [6]Belgin, O., Karaoglan, I., Altiparmak, F., (2018). Two-echelon vehicle routing problem with simultaneous pickup and delivery: Mathematical model and heuristic approach. Computers & Industrial Engineering 115: 1-16. | |
dc.relation | [7]Bullo, F., Frazzoli, E., Pavone, M., Savla, K., Smith, S.L. (2011). Dynamic vehicle routing for robotic systems. Proc. IEEE 99: 1482-1504. | |
dc.relation | [8]Chen, X., Ulmer, M.W., Thomas, B.W. (2021). Deep Q-learning for same-day delivery with vehicles and drones. European Journal of Operational Research. DOI:10.1016/j.ejor.2021.06.021 | |
dc.relation | [9]Chow, J.Y.J. (2016). Dynamic UAV-based traffic monitoring under uncertainty as a stochastic arc-inventory routing policy. International Journal of Transportation Science and Technology: 167-185 | |
dc.relation | [10]Costa, L., Contardo, C., Desaulniers G. (2019). Exact branch-price-and-cut algorithms for vehicle routing. Transportation Science, 53 (4): 946-985. | |
dc.relation | [11]Crainic, TG., Errico, F., Rei, W., Ricciardi, N., (2016). Modeling demand uncertainty in two-tier city logistics tactical planning. Transportation Science 50: 559-578 | |
dc.relation | [12]Dai, R., Fotedar, S., Radmanesh, M., Kumar, M. (2018). Quality-aware UAV coverage and path planning in geometrically complex environments. Ad Hoc Networks 73: 95-105 | |
dc.relation | [13]Dellaert, N. P., van Woensel, T., Crainic, T. G., Dashty Saridarq, F (2021). A multi-commodity two-Echelon capacitated vehicle routing problem with time windows: Model formulations and solution approach. Computers \& Operations Research. DOI:10.1016/j.cor.2020.105154 | |
dc.relation | [14]Evers, L., Barros, A.I., Monsuur, H., Wagelmans, A. (2014). Online stochastic UAV mission planning with time windows and time-sensitive targets. European Journal of Operational Research 238 (1): 348-362. | |
dc.relation | [15]Ferrucci, F., Bock S. (2014). Real-time control of express pickup and delivery processes in a dynamic environment Transportation Research Part B: Methodological: 1-14. | |
dc.relation | [16]Goel, A., Gruhn, V. (2005). Solving a dynamic real-life vehicle routing problem. Operation research proceedings 2005: 367-372. | |
dc.relation | [17]Gonzalez-Feliu, J., Perboli, G., Tadei, R., Vigo, D. (2008). The two-echelon capacitated vehicle routing problem. Technical Report, HAL. | |
dc.relation | [18]Grippa, P., Behrens, D.A.,Bettstetter, C., Wall, F. (2017). Job Selection in a Network of Autonomous UAVs for Delivery of Goods. Conference Robotics: Science and Systems. | |
dc.relation | [19]Gu, W., Archetti, C., Cattaruzza, D., Ogier, M., Semet, F., Speranza, M.G. (2021). A sequential approach for a multi-commodity two-echelon distribution problem. Computers \& Industrial Engineering: 107793. | |
dc.relation | [20]Klapp,M.A., Arslan, AM., Agatz, N.(2021). Operational strategies for on-demand personal shopper services. Transportation Research Part C: Emerging Technologies. | |
dc.relation | [21]Klapp,M.A.,Erera, A.L., Toriello, A. (2016). The one-dimensional dynamic dispatch waves problem. Transportation Science; DOI: 10.1287/TRSC.2016.0682. | |
dc.relation | [22]Klapp,M.A.,Erera, A.L., Toriello, A. (2018). The dynamic dispatch waves problem for same-day delivery. European Journal of Operational Research 271(2): 519-534. | |
dc.relation | [23]Li, H., Wang, H., Chen, J., Bai, M. (2021). Two-echelon vehicle routing problem with satellite bi-synchronization. European Journal of Operational Research 288 (3): 775-793. | |
dc.relation | [24]Lurkin, V., Hambuckers, J., Van Woensel, T. (2021). Urban low emissions zones: A behavioral operations management perspective. Transportation Research Part A: Policy and Practice 144: 222-240. | |
dc.relation | [25]Perboli, G., Tadei, R., Vigo, D. (2011). The two-echelon capacitated vehicle routing problem: models and math-based heuristics. Transportation Science 45 (3): 364-380. | |
dc.relation | [26]Pillac, V., Guéret, C., Medaglia, A.L. (2018). A fast reoptimization approach for the dynamic technician routing and scheduling problem Recent Developments in Metaheuristics, L. Amodeo, E.-G. Talbi and F. Yalaoui (eds), Springer Int. Publ., Cham: 347-367; DOI: 10.1007/978-3-319-58253-5\_20. | |
dc.relation | [27]Reyes, D., Erera, A., Schoenebeck, avelsbergh, M., Sahasrabudhe, S., O'Neil, R. (2018). The Meal Delivery Routing Problem. Optimization Online. | |
dc.relation | [28]Sluijk, N., Florio, A. M., Kinable, J., Dellaert, N., Van Woensel, T. (2021). A chance-constrained two-echelon vehicle routing problem with stochastic demands. Optimization Online. | |
dc.relation | [29]Schyns, M.(2015). An ant colony system for responsive dynamic vehicle routing. European Journal of Operational Research 245 (3): 704-718. | |
dc.relation | [30]Scott, K., Dai, R., Kumar, M. (2016). Occlusion-aware coverage for efficient visual sensing in unmanned aerial vehicle networks. IEEE Global Communications Conference, GLOBECOM 2016. Proceedings, December 4-8, Washington, DC. | |
dc.relation | [31]Sluijk,N., Florio, A M., Kinable, J., Dellaert, N., Van Woensel, T. (2021). Two-echelon vehicle routing problems: A literature review. European Journal of Operational Research.DOI:10.1016/j.ejor.2022.02.022. | |
dc.relation | [32]Tirado, G., Hvattum, L.M., Fagerholt, K., Cordeau, J.-F. (2013). Heuristics for dynamic and stochastic routing in industrial shipping Computers \& Operations Research 40: 253-263. | |
dc.relation | [33]Ulmer, M.W., Thomas, B.W., Mattfeld, D.C. (2018). Preemptive depot returns for same-day delivery. European Journal of Operational Research: 327-361. | |
dc.relation | [34]Ulmer, M.W., Thomas, B.W. (2018). Same-day delivery with heterogeneous fleets of drones and vehicles. Networks: 475-505. | |
dc.relation | [35]Ulmer, M.W. (2017). Dynamic pricing for same-day delivery routing. https://web.winforms.phil.tu-bs.de/paper/ulmer/Ulmer_pricing.pdf (Accessed April 19, 2022) | |
dc.relation | [36]Voccia, SA., Campbell, AM., Thomas, BW. (2017). The same-day delivery problem for online purchases. Transportation Science: 167-184. DOI: 0.1287/TRSC.2016.0732 | |
dc.relation | [37]Wang, X., Kopfer, H., (2015). Rolling horizon planning for a dynamic collaborative routing problem with full-truckload pickup and delivery requests Flexible Services and Manufacturing Journal 27 (4): 509-533. | |
dc.relation | [38]Wang, Z., Wen, P., (2020). Optimization of a low-carbon two-echelon heterogeneous-fleet vehicle routing for cold chain logistics under mixed time window. Sustainability 12 (5): 1-22. | |
dc.relation | [39]Zhang, C., Nemhauser, G., Sokol, J., Cheon, M.-S., Keha, A. (2018). Flexible solutions to maritime inventory routing problems with delivery timewindows Computers \& Operations Research 89: 153-162. | |
dc.relation | [40]Zhou, L., Baldacci, R., Vigo, D., Xu Wang (2018). A Multi-Depot Two-Echelon Vehicle Routing Problem with Delivery Options Arising in the Last Mile Distribution. European Journal of Operational Research. 265(2): 765-778 DOI:10.1016/j.ejor.2017.08.011 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Same-day delivery routing problem with intraroute resource replenishment in a heterogeneous fleet | |
dc.type | Trabajo de grado - Maestría | |