dc.contributorKelkar, Neelima Govind
dc.contributorÁvila Bernal, Carlos Arturo
dc.contributorCristancho Mejía, Luis Fernando
dc.creatorQuintero Arias, Sebastián
dc.date.accessioned2022-05-17T21:02:26Z
dc.date.available2022-05-17T21:02:26Z
dc.date.created2022-05-17T21:02:26Z
dc.date.issued2021-12-10
dc.identifierhttp://hdl.handle.net/1992/57341
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.description.abstractThe process of nucleosynthesis is one of the most interesting nuclear processes in modern astrophysics. The nucleosynthesis is present in different scenarios such as The Big Bang, supernovae explosion, or stellar nucleosynthesis. These processes are important from a thermodynamic perspective. This approach is based on the study of the nuclei at certain conditions of temperature, entropy and chemical potential. With the proper relation of these concepts under certain conditions of interest, one can study the dynamics for certain astrophysical phenomena of interest. Apart from this, the concept of nuclear temperature is of interest for heavy ion collisions and in general for processes where nuclear excitations become important. In this project we focused on the study, and on the understanding of the nucleus under certain thermodynamic conditions. This was carried out making a review of the most basic properties of the nucleus for the present work, these were summarized in Chapter 1. The basic concepts of Binding Energy, Nuclear Potentials and Nuclear deformation are explained. In Chapter 2, we step forward to study the basic definitions of statistical mechanics applied to the nucleus starting from the Fermi Gas formalism towards the definition of level density and its use in the nuclear matter equation of state. Once the basic concepts are defined, in Chapter 3 we focus on the application of these concepts in the definition of Hot Nuclei and along with its behavior in Supernovae. After forming the background for studying hot nuclei, calculations are performed to obtain the temperature dependence of the parameters in the Bethe-Weizs¨acker semiempirical mass formula leading to temperature dependent binding energies of nuclei. These calculations are done by performing fits to an extensive data on the excited states of 286 nuclei. Such a study was last performed about 25 years ago and the parameters of that study are still being used for different studies. The present work provides an updated version of the same with more extensive data. Modifications of the mass formula based on the inclusion of deformation and shell effects can be performed in future.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ciencias - Física
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Física
dc.relationHenri Becquerel. "Sur les radiations émises par phosphorescence". (1896)
dc.relationGeorge L. Trigg. "Landmark Experiments in Twentieth Century Physics". Dover Publications, Inc. New York. (1975).
dc.relationMichael E. Peskin. Daniel V. Schroeder. An Introduction to Quantum Field Theory. Westview press. (1995)
dc.relationMoudgil, K.D., Rao, D.N. Narang, B.S. "Nuclear magnetic resonance and its applications in medicine". Indian J Pediatr 52, 231-241 (1985). https://doi.org/10.1007/BF02754847
dc.relationJean-Louis Basdevant, James Rich, Michael Spiro. "Fundamentals in nuclear physics from nuclear structure to cosmology". Springer. (2005)
dc.relationWang, M., Audi, G., Kondev, F. G., Huang, W. J., Naimi, S., & Xu, X. (2017). The AME2016 atomic mass evaluation. Chin. Phys. C, 41, 030003. doi: 10.1088/1674- 1137/41/3/030003.
dc.relationAnwar Kamal. "Nuclear Physics" Springer-Verlag Berlin Heidelberg. (2014).
dc.relationR. Hofstadter, Annu. Rev. Nucl. Sci. 7 (1957) 231.
dc.relationE.V.Tkalya, C.Schneider, J.Jeet and E.R.Hudson, Phys. Rev. C 92 (2015) no.5, 054324 [erratum: Phys. Rev. C 95 (2017) no.3, 039902] doi:10.1103/PhysRevC.92.054324 [arXiv:1509.09101 [physics.atom-ph]]
dc.relationNuclear Data Services, I., 2021. Livechart - Table of Nuclides - Nuclear structure and decay data. [online] Www-nds.iaea.org. Available at: ¡https://www.nds.iaea.org/relnsd/vcharthtml/VChartHTML.html [Accessed 3 December 2021]
dc.relationG.Mohanto, A.Parihari, P.C.Rout, E.T.Mirgule, S.De, K.Mahata, M.Kushwaha, S.P.Behera and A.Gandhi, "Collective enhancement of nuclear level density" DAE Symp. Nucl. Phys. 63 (2018), 514-515.
dc.relationVladimir Zelevinsky, Alexander Volya. Physics of Atomic Nuclei, John Wiley Sons, Inc., 2017. ISBN: 978-3-527-69363-4.
dc.relationClayton, D. D. Principles of stellar evolution and nucleosynthesis: with a new preface. University of Chicago Press ed. [s. l.]: University of Chicago Press, 1983. ISBN: 0226109534
dc.relationYorikiyo Nagashima, Yoichiro Nambu. Elementary Particle Physics: Quantum Field Theory and Particles V1. John Wiley Sons, Inc., 2011. ISBN: 978-3-527-64396-7.
dc.relationG.E. Brown and A.D. Jackson. The Nucleon-Nucleon Interaction. Amsterdam : North Holland Pub. Co. ; New York : Distributors for the U.S.A. and Canada, American Elsevier Pub. Co., 1976. DOI:10.1063/1.3024658
dc.relationP. Ring, P. Schuck. The Nuclear Many-Body Problem. Springer-Verlag Berlin Heidelberg, 2004. ISBN: 3-540-09820-8
dc.relationBernard E. J. Pagel. Nucleosynthesis and Chemical Evolution of Galaxies. Cambridge University Press, 2009. ISBN:9780511812170. DOI:https://doi.org/10.1017/CBO9780511812170.
dc.relationWiringa, R. Smith, R. Ainsworth, T. (1984). Nucleon-nucleon potentials with and without- (1232) degrees of freedom. , 29(4), 1207-1221. doi:10.1103/physrevc.29.1207
dc.relationLacombe, M. Loiseau, B. Richard, J. M. Mau, R. Vinh Cote, J.; Pires, P. de Tourreil, R. (1980). Parametrization of the Paris N-N potential. Physical Review C, 21(3), 861-873. doi:10.1103/PhysRevC.21.861.
dc.relationV.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen, J.J. de Swart. Construction of high quality Nucleon-Nucleon potential models. Phys.Rev.C49:2950-2962, 1994. [arXiv:nucl¿th/9406039v1]
dc.relationRoger D. Woods, David S. Saxon. Diffuse Surface Optical Model for Nucleon-Nuclei Scattering. Phys. Rev. 95, 577, 1954. doi:https://doi.org/10.1103/PhysRev.95.577
dc.relationOtto Haxel, J. Hans D. Jensen, and Hans E. Suess. On the ¿Magic Numbers in Nuclear Structure. Phys. Rev. 75, 1766, 1949. doi: https://doi.org/10.1103/PhysRev.75.1766.2
dc.relationN. Schwierz, I. Wiedenhover, A. Volya. Parameterization of the Woods-Saxon Potential for Shell-Model Calculations. [arXiv:0709.3525v1 [nucl-th ]
dc.relationA. Bohr, and B.R. Mottelson. Nuclear Structure, Vol. 2, Chapter 5, Chapter 6, App2, World Scientific, Singapore, 1998. ISBN: 9810239807.
dc.relationCrawford, Frank S. (1990). Elementary examples of adiabatic invariance. American Journal of Physics, 58(4), 337. doi:10.1119/1.16166
dc.relationM. Brack; T. Ledergerber; H.C. Pauli; A.S. Jensen (1974). Deformations and moments of inertia of actinide nuclei in the ground and shape isomeric states, 234(1), 185-215. doi:10.1016/0375-9474(74)90386-8
dc.relationS. Aberg, H. Flocard, and W. Nazarewicz, Annu. Rev. Nucl. Part. Sci. 41, 321 (1991).
dc.relationR.V.F Habssebs abd T.L. Khoo, Annu. Rev. Nucl. Part. Sci. 41, 321 (1991)
dc.relationS. Reimann and M. Manninen, Rev. Mod. Phys. 74, 1283 (2002).
dc.relationF. Benatti, F. Carollo, R. Floreanini, H. Narnhofer. Quantum Fluctuations in Mesoscopic Systems [arXiv:1708.02752 [quant-ph]]
dc.relationVladimir Zelevinsky. Quantum Physics. Volume 1: From Basics to Symmetries and Perturbations. John Wiley Sons, Inc., 2010. ISBN: 978-3-527-40979-2.
dc.relationBarber M.E. (2018) Introduction. In: Uniaxial Stress Technique and Investigations of Correlated Electron Systems. Springer Theses (Recognizing Outstanding Ph.D. Research). Springer, Cham. https://doi.org/10.1007/978-3-319-93973-51.
dc.relationV Tripathi. Landau Fermi liquids and beyond. CRC Press, 2018. ISBN: 9781498755436.
dc.relationMichel. Le Bellac, Fabrice. Mortessagne, G. George Batrouni. Equilibrium and Non-Equilibrium Statistical Thermodynamics. Cambridge University Press, 2004. doi:https://doi.org/10.1017/CBO9780511606571.
dc.relationVladimir Zelevinsky. Quantum Physics. Volume 2: From Time-Dependent Dynamics to Many-Body Physics and Quantum Chaos. John Wiley Sons, Inc., 2010. ISBN: 978-3-527-40984-6.
dc.relationM. Baldo, G. F. Burgio. The Nuclear Symmetry Energy.[arXiv:1606.08838v1 [nucl-th]].
dc.relationStone, J. R.; Stone, N. J.; Moszkowski, S. A. (2014). Incompressibility in finite nuclei and nuclear matter. Physical Review C, 89(4), 044316. doi:10.1103/PhysRevC.89.044316
dc.relationJ. Kapusta, Phys. Rev. C 29, 1735 (1984).
dc.relationS. Stoica, L. Trache, R.E. Tribble. Exotic nuclei and Nuclear/Particle Astrophysics. World scientific, 1 ed.,(2006). ISBN:981-270-007-2.
dc.relationB.Davies, Integral Transforms and their Applications, 3rd edn, Springer-Verlag, New York, 2002.
dc.relationHarald J W Muller-Kirsten. Basics of Statistical Physics. World Scientific, second edition, Singapore, (2013). ISBN: 978-981-4449-53-3
dc.relationYa. Frenkel, Sow. Phys. 9, 533 (1936).
dc.relationL.G. Moretto, A.C. Larsen, F. Giacoppo, M. Guttormsen, and S. Siem, J. Phys. Conf. Ser. 580, 012048 (2015).
dc.relationL. Landau and Ya. Smorodinsky, Lectures on Theory of the Atomic Nucleus, Gostekhiz- dat, Moscow, 1955.
dc.relationV.F Weisskopf, Phys. Rev. 52, 295 (1937).
dc.relationH.A. Bethe, Rev. Mod. Phys. 9. 69 (1937).
dc.relationS. DeBenedetti. Nuclear Interactions. John Wiley and Sons (1964).
dc.relationJohn M. Blatt, Victor F. Weisskopf, 1974. Theoretical Nuclear Physics. New York, NY: Dover Publication.
dc.relationA. Bohr, B.R. Mottelson, and D. Pines, Phys. Rev. 110, 936 (1958).
dc.relationS.T. Belyaev, Kgl. Dansk. Vid. Selsk. Mat.-Fys. Medd. 31, No. 11 (1959).
dc.relationR. Broglia and V. Zelevinsky, eds. Fifty Years of Nuclear BCS. Pairing in Finite Systems, World Scientific, Singapore, 2013.
dc.relationChristian Iliadis. Nuclear Physics of Starts. John Wiley and Sons (1964). First Edition,(2006). ISBN: 978-3-527-40602-9.
dc.relationW.Hauser and H.Feshbach, Phys. Rev. 87, 366 (1952).
dc.relationD. Guerreau (1991) Hot nuclei, Nuclear Physics News, 1:6, 13-17, DOI: 10.1080/10506899108260780.
dc.relationSaraceno, M.; Vary, J. P.; Bozzolo, G.; Miller, H. G. (1988). Thermodynamic coefficients of hot nuclei. Physical Review C, 37(3), 1267-1280. doi:10.1103/physrevc.37.1267
dc.relationJ.Bondorf, R.Donangelo, H.Schulz, K.Sneppen: Phys.Lett. 162B (1985) 30. Energy thresholds for fragmentation and vaporization of the atomic nucleus.
dc.relationBorderie, B.; Le Neindre, N.; Rivet, M.F.; D ¿esesquelles, P.; Bonnet, E.; Bougault, R.; Chbihi, A.; Dell¿Aquila, D.; Fable, Q.; Frankland, J.D.; Galichet, E.; Gruyer, D.; Gui- net, D.; La Commara, M.; Lombardo, I.; Lopez, O.; Manduci, L.; Napolitani, P.; Prlog, M.; Rosato, E.; Roy, R.; St-Onge, P.; Verde, G.; Vient, E.; Vigilante, M.; Wieleczko, J.P. (2018). Phase transition dynamics for hot nuclei. Physics Letters B, 782(), 291-296. doi:10.1016/j.physletb.2018.05.040
dc.relationA.S. Botvina, I.N. Mishustin. Formation of hot heavy nuclei in supernova explosions. [arXiv:nucl-th/0312116v1 f].
dc.relationNuclear Power, 2021. Compound reactions. [online]. Www.nuclear-power.com. Available at: https://www.nuclear-power.com/nuclear-power/reactor-physics/nuclear-engineering-fundamentals/neutron-nuclear-reactions/compound-nucleus-reactions/.[Accessed 8 December 2021].
dc.relationGarg, J. B., Rainwater, J., Petersen, J. S., Havens, W. W. (1964). Phys. Rev. 134 B985-B1009. doi:10.1103/physrev.134.b985
dc.relationN.J. Davidson; S.S. Hsiao; J. Markram; H.G. Miller; Tzeng Yiharn (1994). A semi-empirical determination of the properties of nuclear matter., 570(1-2), 61-68. doi:10.1016/0375-9474(94)90269-0.
dc.relationM. Brack and P. Quentin. Phys. Lett., B52, 159 (1974)
dc.relationGilbert, A., and A.G.W. Cameron, (1965). A composite nuclear-level density formula with shell corrections. Can. J. Phys., 43, 1446-1496, doi:10.1139/p65-139.
dc.relationQingkai Kong, Timmy Siauw. Alexandre Bayen. Python Programming and Numerical Methods A Guide for Engineers and Scientists. ELSEVIER, Academic Press, (2020). ISBN: 978-0-12-819549-9.
dc.relationM. Baldo, J. Cugnon, A. Lejeune, and U. Lombardo. Nucl. Phys., A515, 409 (1990).
dc.relationP.Moller, A. J. Sierk, T. Ichikawa, H. Sagawa. Nuclear ground-state masses and deformations: FRDM(2012)[arXiv:1508.06294v1 [nucl-th]
dc.relationP. Thieberger. phys. lett. 45B (1973) 417. 107.
dc.relationC. Guet; E. Strumberger; M. Brack (1988). Liquid drop parameters for hot nuclei., 205(4), 427-431. doi:10.1016/0370-2693(88)90971-9
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleNuclear properties in an astrophysical environment
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución