dc.contributor | Kelkar, Neelima Govind | |
dc.contributor | Ávila Bernal, Carlos Arturo | |
dc.contributor | Cristancho Mejía, Luis Fernando | |
dc.creator | Quintero Arias, Sebastián | |
dc.date.accessioned | 2022-05-17T21:02:26Z | |
dc.date.available | 2022-05-17T21:02:26Z | |
dc.date.created | 2022-05-17T21:02:26Z | |
dc.date.issued | 2021-12-10 | |
dc.identifier | http://hdl.handle.net/1992/57341 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.description.abstract | The process of nucleosynthesis is one of the most interesting nuclear processes in modern astrophysics. The nucleosynthesis is present in different scenarios such as The Big Bang, supernovae explosion, or stellar nucleosynthesis. These processes are important from a thermodynamic perspective. This approach is based on the study of the nuclei at certain conditions of temperature, entropy and chemical potential. With the proper relation of these concepts under certain conditions of interest, one can study the dynamics for certain astrophysical phenomena of interest. Apart from this, the concept of nuclear temperature is of interest for heavy ion collisions and in general for processes where nuclear excitations become important.
In this project we focused on the study, and on the understanding of the nucleus under certain thermodynamic conditions. This was carried out making a review of the most basic properties of the nucleus for the present work, these were summarized in Chapter 1. The basic concepts of Binding Energy, Nuclear Potentials and Nuclear deformation are explained. In Chapter 2, we step forward to study the basic definitions of statistical mechanics applied to the nucleus starting from the Fermi Gas formalism towards the definition of level density and its use in the nuclear matter equation of state. Once the basic concepts are defined, in Chapter 3 we focus on the application of these concepts in the definition of Hot Nuclei and along with its behavior in Supernovae. After forming the background for studying hot
nuclei, calculations are performed to obtain the temperature dependence of the parameters in
the Bethe-Weizs¨acker semiempirical mass formula leading to temperature dependent binding
energies of nuclei. These calculations are done by performing fits to an extensive data on the
excited states of 286 nuclei. Such a study was last performed about 25 years ago and the
parameters of that study are still being used for different studies. The present work provides
an updated version of the same with more extensive data. Modifications of the mass formula
based on the inclusion of deformation and shell effects can be performed in future. | |
dc.language | eng | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Maestría en Ciencias - Física | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Departamento de Física | |
dc.relation | Henri Becquerel. "Sur les radiations émises par phosphorescence". (1896) | |
dc.relation | George L. Trigg. "Landmark Experiments in Twentieth Century Physics". Dover Publications, Inc. New York. (1975). | |
dc.relation | Michael E. Peskin. Daniel V. Schroeder. An Introduction to Quantum Field Theory.
Westview press. (1995) | |
dc.relation | Moudgil, K.D., Rao, D.N. Narang, B.S. "Nuclear magnetic resonance and its applications
in medicine". Indian J Pediatr 52, 231-241 (1985). https://doi.org/10.1007/BF02754847 | |
dc.relation | Jean-Louis Basdevant, James Rich, Michael Spiro. "Fundamentals in nuclear physics from nuclear structure to cosmology". Springer. (2005) | |
dc.relation | Wang, M., Audi, G., Kondev, F. G., Huang, W. J., Naimi, S., & Xu, X. (2017).
The AME2016 atomic mass evaluation. Chin. Phys. C, 41, 030003. doi: 10.1088/1674-
1137/41/3/030003. | |
dc.relation | Anwar Kamal. "Nuclear Physics" Springer-Verlag Berlin Heidelberg. (2014). | |
dc.relation | R. Hofstadter, Annu. Rev. Nucl. Sci. 7 (1957) 231. | |
dc.relation | E.V.Tkalya, C.Schneider, J.Jeet and E.R.Hudson, Phys. Rev. C 92 (2015) no.5, 054324
[erratum: Phys. Rev. C 95 (2017) no.3, 039902] doi:10.1103/PhysRevC.92.054324 [arXiv:1509.09101 [physics.atom-ph]] | |
dc.relation | Nuclear Data Services, I., 2021. Livechart - Table of Nuclides - Nuclear structure and decay data. [online] Www-nds.iaea.org. Available at: ¡https://www.nds.iaea.org/relnsd/vcharthtml/VChartHTML.html [Accessed 3 December 2021] | |
dc.relation | G.Mohanto, A.Parihari, P.C.Rout, E.T.Mirgule, S.De, K.Mahata, M.Kushwaha,
S.P.Behera and A.Gandhi, "Collective enhancement of nuclear level density" DAE Symp.
Nucl. Phys. 63 (2018), 514-515. | |
dc.relation | Vladimir Zelevinsky, Alexander Volya. Physics of Atomic Nuclei, John Wiley Sons, Inc., 2017. ISBN: 978-3-527-69363-4. | |
dc.relation | Clayton, D. D. Principles of stellar evolution and nucleosynthesis: with a new preface. University of Chicago Press ed. [s. l.]: University of Chicago Press, 1983. ISBN: 0226109534 | |
dc.relation | Yorikiyo Nagashima, Yoichiro Nambu. Elementary Particle Physics: Quantum Field
Theory and Particles V1. John Wiley Sons, Inc., 2011. ISBN: 978-3-527-64396-7. | |
dc.relation | G.E. Brown and A.D. Jackson. The Nucleon-Nucleon Interaction. Amsterdam : North Holland Pub. Co. ; New York : Distributors for the U.S.A. and Canada, American Elsevier
Pub. Co., 1976. DOI:10.1063/1.3024658 | |
dc.relation | P. Ring, P. Schuck. The Nuclear Many-Body Problem. Springer-Verlag Berlin Heidelberg, 2004. ISBN: 3-540-09820-8 | |
dc.relation | Bernard E. J. Pagel. Nucleosynthesis and Chemical Evolution of Galaxies. Cambridge University Press, 2009. ISBN:9780511812170. DOI:https://doi.org/10.1017/CBO9780511812170. | |
dc.relation | Wiringa, R. Smith, R. Ainsworth, T. (1984). Nucleon-nucleon potentials with and without- (1232) degrees of freedom. , 29(4), 1207-1221. doi:10.1103/physrevc.29.1207 | |
dc.relation | Lacombe, M. Loiseau, B. Richard, J. M. Mau, R. Vinh Cote, J.; Pires, P. de Tourreil, R.
(1980). Parametrization of the Paris N-N potential. Physical Review C, 21(3), 861-873. doi:10.1103/PhysRevC.21.861. | |
dc.relation | V.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen, J.J. de Swart. Construction of high quality Nucleon-Nucleon potential models. Phys.Rev.C49:2950-2962, 1994. [arXiv:nucl¿th/9406039v1] | |
dc.relation | Roger D. Woods, David S. Saxon. Diffuse Surface Optical Model for Nucleon-Nuclei Scattering. Phys. Rev. 95, 577, 1954. doi:https://doi.org/10.1103/PhysRev.95.577 | |
dc.relation | Otto Haxel, J. Hans D. Jensen, and Hans E. Suess. On the ¿Magic Numbers in Nuclear Structure. Phys. Rev. 75, 1766, 1949. doi: https://doi.org/10.1103/PhysRev.75.1766.2 | |
dc.relation | N. Schwierz, I. Wiedenhover, A. Volya. Parameterization of the Woods-Saxon Potential for Shell-Model Calculations. [arXiv:0709.3525v1 [nucl-th ] | |
dc.relation | A. Bohr, and B.R. Mottelson. Nuclear Structure, Vol. 2, Chapter 5, Chapter 6, App2, World Scientific, Singapore, 1998. ISBN: 9810239807. | |
dc.relation | Crawford, Frank S. (1990). Elementary examples of adiabatic invariance. American Journal of Physics, 58(4), 337. doi:10.1119/1.16166 | |
dc.relation | M. Brack; T. Ledergerber; H.C. Pauli; A.S. Jensen (1974). Deformations and moments of inertia of actinide nuclei in the ground and shape isomeric states, 234(1), 185-215. doi:10.1016/0375-9474(74)90386-8 | |
dc.relation | S. Aberg, H. Flocard, and W. Nazarewicz, Annu. Rev. Nucl. Part. Sci. 41, 321 (1991). | |
dc.relation | R.V.F Habssebs abd T.L. Khoo, Annu. Rev. Nucl. Part. Sci. 41, 321 (1991) | |
dc.relation | S. Reimann and M. Manninen, Rev. Mod. Phys. 74, 1283 (2002). | |
dc.relation | F. Benatti, F. Carollo, R. Floreanini, H. Narnhofer. Quantum Fluctuations in Mesoscopic Systems [arXiv:1708.02752 [quant-ph]] | |
dc.relation | Vladimir Zelevinsky. Quantum Physics. Volume 1: From Basics to Symmetries and Perturbations. John Wiley Sons, Inc., 2010. ISBN: 978-3-527-40979-2. | |
dc.relation | Barber M.E. (2018) Introduction. In: Uniaxial Stress Technique and Investigations of Correlated Electron Systems. Springer Theses (Recognizing Outstanding Ph.D. Research). Springer, Cham. https://doi.org/10.1007/978-3-319-93973-51. | |
dc.relation | V Tripathi. Landau Fermi liquids and beyond. CRC Press, 2018. ISBN: 9781498755436. | |
dc.relation | Michel. Le Bellac, Fabrice. Mortessagne, G. George Batrouni. Equilibrium and Non-Equilibrium Statistical Thermodynamics. Cambridge University Press, 2004. doi:https://doi.org/10.1017/CBO9780511606571. | |
dc.relation | Vladimir Zelevinsky. Quantum Physics. Volume 2: From Time-Dependent Dynamics to Many-Body Physics and Quantum Chaos. John Wiley Sons, Inc., 2010. ISBN: 978-3-527-40984-6. | |
dc.relation | M. Baldo, G. F. Burgio. The Nuclear Symmetry Energy.[arXiv:1606.08838v1 [nucl-th]]. | |
dc.relation | Stone, J. R.; Stone, N. J.; Moszkowski, S. A. (2014). Incompressibility in finite nuclei and nuclear matter. Physical Review C, 89(4), 044316. doi:10.1103/PhysRevC.89.044316 | |
dc.relation | J. Kapusta, Phys. Rev. C 29, 1735 (1984). | |
dc.relation | S. Stoica, L. Trache, R.E. Tribble. Exotic nuclei and Nuclear/Particle Astrophysics. World scientific, 1 ed.,(2006). ISBN:981-270-007-2. | |
dc.relation | B.Davies, Integral Transforms and their Applications, 3rd edn, Springer-Verlag, New York, 2002. | |
dc.relation | Harald J W Muller-Kirsten. Basics of Statistical Physics. World Scientific, second edition, Singapore, (2013). ISBN: 978-981-4449-53-3 | |
dc.relation | Ya. Frenkel, Sow. Phys. 9, 533 (1936). | |
dc.relation | L.G. Moretto, A.C. Larsen, F. Giacoppo, M. Guttormsen, and S. Siem, J. Phys. Conf.
Ser. 580, 012048 (2015). | |
dc.relation | L. Landau and Ya. Smorodinsky, Lectures on Theory of the Atomic Nucleus, Gostekhiz-
dat, Moscow, 1955. | |
dc.relation | V.F Weisskopf, Phys. Rev. 52, 295 (1937). | |
dc.relation | H.A. Bethe, Rev. Mod. Phys. 9. 69 (1937). | |
dc.relation | S. DeBenedetti. Nuclear Interactions. John Wiley and Sons (1964). | |
dc.relation | John M. Blatt, Victor F. Weisskopf, 1974. Theoretical Nuclear Physics. New York, NY: Dover Publication. | |
dc.relation | A. Bohr, B.R. Mottelson, and D. Pines, Phys. Rev. 110, 936 (1958). | |
dc.relation | S.T. Belyaev, Kgl. Dansk. Vid. Selsk. Mat.-Fys. Medd. 31, No. 11 (1959). | |
dc.relation | R. Broglia and V. Zelevinsky, eds. Fifty Years of Nuclear BCS. Pairing in Finite Systems, World Scientific, Singapore, 2013. | |
dc.relation | Christian Iliadis. Nuclear Physics of Starts. John Wiley and Sons (1964). First Edition,(2006). ISBN: 978-3-527-40602-9. | |
dc.relation | W.Hauser and H.Feshbach, Phys. Rev. 87, 366 (1952). | |
dc.relation | D. Guerreau (1991) Hot nuclei, Nuclear Physics News, 1:6, 13-17, DOI: 10.1080/10506899108260780. | |
dc.relation | Saraceno, M.; Vary, J. P.; Bozzolo, G.; Miller, H. G. (1988). Thermodynamic coefficients of hot nuclei. Physical Review C, 37(3), 1267-1280. doi:10.1103/physrevc.37.1267 | |
dc.relation | J.Bondorf, R.Donangelo, H.Schulz, K.Sneppen: Phys.Lett. 162B (1985) 30. Energy thresholds for fragmentation and vaporization of the atomic nucleus. | |
dc.relation | Borderie, B.; Le Neindre, N.; Rivet, M.F.; D ¿esesquelles, P.; Bonnet, E.; Bougault, R.;
Chbihi, A.; Dell¿Aquila, D.; Fable, Q.; Frankland, J.D.; Galichet, E.; Gruyer, D.; Gui-
net, D.; La Commara, M.; Lombardo, I.; Lopez, O.; Manduci, L.; Napolitani, P.; Prlog,
M.; Rosato, E.; Roy, R.; St-Onge, P.; Verde, G.; Vient, E.; Vigilante, M.; Wieleczko,
J.P. (2018). Phase transition dynamics for hot nuclei. Physics Letters B, 782(), 291-296.
doi:10.1016/j.physletb.2018.05.040 | |
dc.relation | A.S. Botvina, I.N. Mishustin. Formation of hot heavy nuclei in supernova explosions. [arXiv:nucl-th/0312116v1 f]. | |
dc.relation | Nuclear Power, 2021. Compound reactions. [online]. Www.nuclear-power.com. Available at: https://www.nuclear-power.com/nuclear-power/reactor-physics/nuclear-engineering-fundamentals/neutron-nuclear-reactions/compound-nucleus-reactions/.[Accessed 8 December 2021]. | |
dc.relation | Garg, J. B., Rainwater, J., Petersen, J. S., Havens, W. W. (1964). Phys. Rev. 134 B985-B1009. doi:10.1103/physrev.134.b985 | |
dc.relation | N.J. Davidson; S.S. Hsiao; J. Markram; H.G. Miller; Tzeng Yiharn (1994). A semi-empirical determination of the properties of nuclear matter., 570(1-2), 61-68. doi:10.1016/0375-9474(94)90269-0. | |
dc.relation | M. Brack and P. Quentin. Phys. Lett., B52, 159 (1974) | |
dc.relation | Gilbert, A., and A.G.W. Cameron, (1965). A composite nuclear-level density formula with shell corrections. Can. J. Phys., 43, 1446-1496, doi:10.1139/p65-139. | |
dc.relation | Qingkai Kong, Timmy Siauw. Alexandre Bayen. Python Programming and Numerical Methods A Guide for Engineers and Scientists. ELSEVIER, Academic Press, (2020). ISBN: 978-0-12-819549-9. | |
dc.relation | M. Baldo, J. Cugnon, A. Lejeune, and U. Lombardo. Nucl. Phys., A515, 409 (1990). | |
dc.relation | P.Moller, A. J. Sierk, T. Ichikawa, H. Sagawa. Nuclear ground-state masses and deformations: FRDM(2012)[arXiv:1508.06294v1 [nucl-th] | |
dc.relation | P. Thieberger. phys. lett. 45B (1973) 417. 107. | |
dc.relation | C. Guet; E. Strumberger; M. Brack (1988). Liquid drop parameters for hot nuclei., 205(4), 427-431. doi:10.1016/0370-2693(88)90971-9 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Nuclear properties in an astrophysical environment | |
dc.type | Trabajo de grado - Maestría | |