dc.contributorUniversidad EAFIT. Departamento de Ingeniería de Procesos
dc.contributorDesarrollo y Diseño de Procesos
dc.creatorMontoya-Zapata D.
dc.creatorAcosta D.A.
dc.creatorRuiz-Salguero O.
dc.creatorSanchez-Londono D.
dc.date.accessioned2021-04-12T19:08:54Z
dc.date.accessioned2022-09-23T22:14:16Z
dc.date.available2021-04-12T19:08:54Z
dc.date.available2022-09-23T22:14:16Z
dc.date.created2021-04-12T19:08:54Z
dc.date.issued2019-01-01
dc.identifier21945357
dc.identifier21945365
dc.identifierWOS;000558195800020
dc.identifierSCOPUS;2-s2.0-85048638704
dc.identifierhttp://hdl.handle.net/10784/28307
dc.identifier10.1007/978-3-319-94120-2_20
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3541377
dc.description.abstractEvolutionary Structural Optimization (ESO) seeks to mimic the form in which nature designs shapes. This paper focuses on shape carving triggered by environmental stimuli. In this realm, existing algorithms delete under - stressed parts of a basic shape, until a reasonably efficient (under some criterion) shape emerges. In the present article, we state a generalization of such approaches in two forms: (1) We use a formalism that enables stimuli from different sources, in addition to stress ones (e.g. kinematic constraints, friction, abrasion). (2) We use metagraphs built on the Finite Element constraint graphs to eliminate the dependency of the evolution on the particular neighborhood chosen to be deleted in a given iteration. The proposed methodology emulates 2D landmark cases of ESO. Future work addresses the implementation of such stimuli type, the integration of our algorithm with evolutionary based techniques and the extension of the method to 3D shapes. © 2019, Springer International Publishing AG, part of Springer Nature.
dc.languageeng
dc.publisherSpringer Verlag
dc.relationhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85048638704&doi=10.1007%2f978-3-319-94120-2_20&partnerID=40&md5=a52a5b095068715838aee2e3b7c40753
dc.relationDOI;10.1007/978-3-319-94120-2_20
dc.relationWOS;000558195800020
dc.relationSCOPUS;2-s2.0-85048638704
dc.rightshttps://v2.sherpa.ac.uk/id/publication/issn/2194-5357
dc.sourceAdvances In Intelligent Systems And Computing
dc.titleFEA Structural Optimization Based on Metagraphs
dc.typeinfo:eu-repo/semantics/conferencePaper
dc.typeconferencePaper
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typepublishedVersion


Este ítem pertenece a la siguiente institución