dc.contributorUniversidad EAFIT. Departamento de Ingeniería Mecánica
dc.contributorMecatrónica y Diseño de Máquinas
dc.creatorArango I.
dc.creatorBonil L.
dc.creatorPosada D.
dc.creatorArcila J.
dc.creatorArango I.
dc.creatorBonil L.
dc.creatorPosada D.
dc.creatorArcila J.
dc.date.accessioned2021-04-16T20:20:48Z
dc.date.available2021-04-16T20:20:48Z
dc.date.created2021-04-16T20:20:48Z
dc.date.issued2019-01-01
dc.identifier19552513
dc.identifier19552505
dc.identifierWOS;000478773600012
dc.identifierSCOPUS;2-s2.0-85061717311
dc.identifierhttp://hdl.handle.net/10784/29309
dc.identifier10.1007/s12008-019-00547-w
dc.description.abstractPrinting with inkjet technology has found new forms of application in the industry and in this article we study this technology focused on printing on non-flat surfaces. Since there is no print history over distances greater than 1 mm due to the rupture phenomenon, an initial quality standard is defined to measure achievements in a relative manner. An interactive method is used that requires the user to approach the machine in multiple analyzes of different types. The first approach is a mathematical model this model was constructed to predict the drop distance of the drop in the non-planar substrate with respect to the planned one in the flat substrate, taking into account that most of the drops fall to different heights presenting a greater or lesser state of development the phenomena present in the flight. The results allow to initiate a process of compensation that avoids the distortion of the figure to improve the printing resolution. The results are validated using a relative quality through industrial ink-jet printer with heads capable of injecting functional fluids. The initial result indicates that in standard surface printing with print relative quality already defined, it can be used only for low resolution formats with thick lines, and the result can be improved when the original figure is treated by compensating the distance between the numerical prediction and the initial objective. © 2019, Springer-Verlag France SAS, part of Springer Nature.
dc.languageeng
dc.publisherSpringer-Verlag France
dc.relationhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85061717311&doi=10.1007%2fs12008-019-00547-w&partnerID=40&md5=5b1fa5677f591975a142f2b5c615c140
dc.rightshttps://v2.sherpa.ac.uk/id/publication/issn/1955-2513
dc.sourceInternational Journal On Interactive Design And Manufacturing
dc.subjectCompensation (personnel)
dc.subjectDrops
dc.subjectFighter aircraft
dc.subjectForecasting
dc.subjectInk
dc.subjectInk jet printers
dc.subjectSubstrates
dc.subjectDroplet trajectories
dc.subjectFunctional fluids
dc.subjectInteractive methods
dc.subjectNon flats
dc.subjectNon-planar substrates
dc.subjectNumerical predictions
dc.subjectPrinting resolution
dc.subjectRelative qualities
dc.subjectInk jet printing
dc.titlePrediction of a flying droplet landing over a non-flat substrates for ink-jet applications
dc.typeinfo:eu-repo/semantics/article
dc.typearticle
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typepublishedVersion


Este ítem pertenece a la siguiente institución