dc.contributorUniversidad EAFIT. Escuela de Ciencias
dc.contributorModelado Matemático
dc.creatorCogollo M
dc.creatorArtega, Mònica
dc.creatorCogollo, Juan Miguel
dc.creatorFlores, Andrea
dc.date.accessioned2021-04-12T14:07:15Z
dc.date.accessioned2022-09-23T22:03:20Z
dc.date.available2021-04-12T14:07:15Z
dc.date.available2022-09-23T22:03:20Z
dc.date.created2021-04-12T14:07:15Z
dc.date.issued2017-12-01
dc.identifier15822559
dc.identifierSCOPUS;2-s2.0-85034618879
dc.identifierhttp://hdl.handle.net/10784/27793
dc.identifierWOS;000423621600009
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3538543
dc.description.abstractThe current methods for estimating Process Capability Indices are based on the assumptions of normality and accuracy of process data. Under actual production conditions the data of quality characteristics of the products may be non-normal and/or have imprecise parameters. Therefore, in this paper we propose a new methodology for estimating Process Capability Indices when the data are non-normal and the specification limits are not crisp numbers. The methodology was validated using experimental data. The proposed methodology uses the Clements's method assuming a Burr type XII distribution, whose parameters are estimated through metaheuristic techniques, and considers the obtaining of fuzzy numbers using the statistical inference theory.
dc.languageeng
dc.publisherSRAC - Societatea Romana Pentru Asigurarea Calitatii
dc.relationhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85034618879&partnerID=40&md5=5eda0000075ab94a838c0b5c6c5528f2
dc.rightsSRAC - Societatea Romana Pentru Asigurarea Calitatii
dc.sourceQUALITY-ACCESS TO SUCCESS
dc.titleOptimal Estimation of Process Capability Indices with Non-Normal Data and Inaccurate Parameters using Metaheuristics
dc.typearticle
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typepublishedVersion


Este ítem pertenece a la siguiente institución