dc.contributorUniversidad EAFIT. Departamento de Ingeniería de Producción
dc.contributorMateriales de Ingeniería
dc.creatorArola D.
dc.creatorGhods S.
dc.creatorSon C.
dc.creatorMurcia S.
dc.creatorOssa E.A.
dc.creatorArola D.
dc.creatorGhods S.
dc.creatorSon C.
dc.creatorMurcia S.
dc.creatorOssa E.A.
dc.date.accessioned2021-04-12T21:26:45Z
dc.date.accessioned2022-09-23T22:01:40Z
dc.date.available2021-04-12T21:26:45Z
dc.date.available2022-09-23T22:01:40Z
dc.date.created2021-04-12T21:26:45Z
dc.date.issued2019-01-01
dc.identifier17425689
dc.identifier17425662
dc.identifierWOS;000456785900020
dc.identifierPUBMED;30958147
dc.identifierSCOPUS;2-s2.0-85061309138
dc.identifierhttp://hdl.handle.net/10784/29122
dc.identifier10.1098/rsif.2018.0775
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3538085
dc.description.abstractFish scales are laminated composites that consist of plies of unidirectional collagen fibrils with twisted-plywood stacking arrangement. Owing to their composition, the toughness of scales is dependent on the intermolecular bonding within and between the collagen fibrils. Adjusting the extent of this bonding with an appropriate stimulus has implications for the design of next-generation bioinspired flexible armours. In this investigation, scales were exposed to environments of water or a polar solvent (i.e. ethanol) to influence the extent of intermolecular bonding, and their mechanical behaviour was evaluated in uniaxial tension and transverse puncture. Results showed that the resistance to failure of the scales increased with loading rate in both tension and puncture and that the polar solvent treatment increased both the strength and toughness through interpeptide bonding; the largest increase occurred in the puncture resistance of scales from the tail region (a factor of nearly 7). The increase in strength and damage tolerance with stronger intermolecular bonding is uncommon for structural materials and is a unique characteristic of the low mineral content. Scales from regions of the body with higher mineral content underwent less strengthening, which is most likely the result of interference posed by the mineral crystals to intermolecular bonding. Overall, the results showed that flexible bioinspired composite materials for puncture resistance should enrol constituents and complementary processing that capitalize on interfibril bonds. © 2019 The Author(s) Published by the Royal Society. All rights reserved.
dc.languageeng
dc.publisherRoyal Society Publishing
dc.relationhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85061309138&doi=10.1098%2frsif.2018.0775&partnerID=40&md5=93af943b8a247e6b07a4fe0ea2a1fef1
dc.rightshttps://v2.sherpa.ac.uk/id/publication/issn/1742-5689
dc.sourceJOURNAL OF THE ROYAL SOCIETY INTERFACE
dc.subjectArmor
dc.subjectBonding
dc.subjectCollagen
dc.subjectFish
dc.subjectHydrogen
dc.subjectHydrogen bonds
dc.subjectLaminated composites
dc.subjectMinerals
dc.subjectOrganic solvents
dc.subjectToughness
dc.subjectFish scale
dc.subjectInter-molecular bonding
dc.subjectMechanical behaviour
dc.subjectNatural armour
dc.subjectPuncture
dc.subjectPuncture resistances
dc.subjectStrength and toughness
dc.subjectUniaxial tensions
dc.subjectStrain rate
dc.titleInterfibril hydrogen bonding improves the strain-rate response of natural armour
dc.typeinfo:eu-repo/semantics/article
dc.typearticle
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typepublishedVersion


Este ítem pertenece a la siguiente institución