dc.contributorUniversidad EAFIT. Departamento de Ciencias
dc.contributorMatemáticas y Aplicaciones
dc.creatorMejia D.
dc.creatorRuiz-Salguero O.
dc.creatorSánchez J.R.
dc.creatorPosada J.
dc.creatorMoreno A.
dc.creatorCadavid C.A.
dc.creatorMejia D.
dc.creatorRuiz-Salguero O.
dc.creatorSánchez J.R.
dc.creatorPosada J.
dc.creatorMoreno A.
dc.creatorCadavid C.A.
dc.date.accessioned2021-04-12T14:04:22Z
dc.date.accessioned2022-09-23T21:58:10Z
dc.date.available2021-04-12T14:04:22Z
dc.date.available2022-09-23T21:58:10Z
dc.date.created2021-04-12T14:04:22Z
dc.date.issued2018-06-01
dc.identifier00978493
dc.identifier18737684
dc.identifierWOS;000436219500005
dc.identifierSCOPUS;2-s2.0-85045197970
dc.identifierhttp://hdl.handle.net/10784/27711
dc.identifier10.1016/j.cag.2018.03.004
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3537125
dc.description.abstractMesh segmentation and parameterization are crucial for Reverse Engineering (RE). Bijective parameterizations of the sub-meshes are a sine-qua-non test for segmentation. Current segmentation methods use either (1) topologic or (2) geometric criteria to partition the mesh. Reported topology-based segmentations produce large sub-meshes which reject parameterizations. Geometry-based segmentations are very sensitive to local variations in dihedral angle or curvatures, thus producing an exaggerated large number of small sub-meshes. Although small sub-meshes accept nearly isometric parameterizations, this significant granulation defeats the intent of synthesizing a usable Boundary Representation (compulsory for RE). In response to these limitations, this article presents an implementation of a hybrid geometry / topology segmentation algorithm for mechanical workpieces. This method locates heat transfer constraints (topological criterion) in low frequency neighborhoods of the mesh (geometric criterion) and solves for the resulting temperature distribution on the mesh. The mesh partition dictated by the temperature scalar map results in large, albeit parameterizable, sub-meshes. Our algorithm is tested with both benchmark repository and physical piece scans data. The experiments are successful, except for the well - known cases of topological cylinders, which require a user - introduced boundary along the cylinder generatrices. © 2018 Elsevier Ltd
dc.languageeng
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD
dc.relationhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85045197970&doi=10.1016%2fj.cag.2018.03.004&partnerID=40&md5=a5852e742f7962cc5d7547415c011871
dc.rightshttps://v2.sherpa.ac.uk/id/publication/issn/0097-8493
dc.sourceCOMPUTERS & GRAPHICS-UK
dc.subjectComputer aided design
dc.subjectComputer aided engineering
dc.subjectCylinders (shapes)
dc.subjectDihedral angle
dc.subjectHeat transfer
dc.subjectImage segmentation
dc.subjectParameterization
dc.subjectReverse engineering
dc.subjectTopology
dc.subjectBoundary representations
dc.subjectCAD/CAM/CAE
dc.subjectHybrid geometries
dc.subjectLocal variations
dc.subjectMesh segmentation
dc.subjectSegmentation algorithms
dc.subjectSegmentation methods
dc.subjectTopological criteria
dc.subjectMesh generation
dc.titleHybrid geometry / topology based mesh segmentation for reverse engineering
dc.typearticle
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typepublishedVersion


Este ítem pertenece a la siguiente institución