dc.contributorLaniado Rodas, Henry
dc.creatorCardona Pineda, Danny Styvens
dc.date.accessioned2020-10-16T20:33:33Z
dc.date.accessioned2022-09-23T21:45:17Z
dc.date.available2020-10-16T20:33:33Z
dc.date.available2022-09-23T21:45:17Z
dc.date.created2020-10-16T20:33:33Z
dc.date.issued2020
dc.identifierhttp://hdl.handle.net/10784/24154
dc.identifier511.8 C268
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3533811
dc.description.abstractThe main contribution of this work is the combination of similarity measures, methods for the construction of subspaces and classification models. Specifically, the NCC was used as a measure of similarity, which was projected to subspace in singular value decomposition following the Eigenfaces methodology, to then apply classification models on these projections. Results with an accuracy of 81% and a predictive capacity of at least 79% were observed for this combination of methods.
dc.languagespa
dc.publisherUniversidad EAFIT
dc.publisherMaestría en Ciencias de los Datos y Analítica
dc.publisherEscuela de Administración
dc.publisherMedellín
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAcceso abierto
dc.subjectMapa de correlaciones
dc.subjectBIANCA
dc.subjectPermutaciones
dc.subjectEntropía
dc.subjectEigenfaces
dc.subjectMachine Learning
dc.titleModelo matemático combinado para la clasificación de neuroimágenes basado en medidas de similaridad entre hemisferios del cerebro
dc.typemasterThesis
dc.typeinfo:eu-repo/semantics/masterThesis


Este ítem pertenece a la siguiente institución