dc.contributor | department:Universidad EAFIT. Escuela de Ciencias. Grupo de Investigación Análisis Funcional y Aplicaciones | |
dc.contributor | Análisis Funcional y Aplicaciones | |
dc.creator | Quiceno Echavarría, Héctor Román | |
dc.creator | Loaiza Ossa, Gabriel Ignacio | |
dc.date.accessioned | 2015-04-24T16:18:49Z | |
dc.date.accessioned | 2022-09-23T21:31:35Z | |
dc.date.available | 2015-04-24T16:18:49Z | |
dc.date.available | 2022-09-23T21:31:35Z | |
dc.date.created | 2015-04-24T16:18:49Z | |
dc.date.issued | 2013-02 | |
dc.identifier | G. Loaiza, H.R. Quiceno, A -exponential statistical Banach manifold, Journal of Mathematical Analysis and Applications, Volume 398, Issue 2, 15 February 2013, Pages 466-476, ISSN 0022-247X, http://dx.doi.org/10.1016/j.jmaa.2012.08.046.
(http://www.sciencedirect.com/science/article/pii/S0022247X12006981) | |
dc.identifier | 0022-247X | |
dc.identifier | http://hdl.handle.net/10784/5245 | |
dc.identifier | 10.1016/j.jmaa.2012.08.046 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3530712 | |
dc.description.abstract | Letµbe a given probability measure andMµ the set ofµ-equivalent strictly positive probability densities -- In this paper we construct a Banach manifold on Mµ, modeled on the space L∞(p · µ) where p is a reference density, for the non-parametric q-exponential statistical models (Tsallis’s deformed exponential), where 0 < q < 1 is any real number -- This family is characterized by the fact that when q → 1, then the non-parametric exponential models are obtained and the manifold constructed by Pistone and Sempi is recovered, up to continuous embeddings on the modeling space -- The coordinate mappings of the manifold are given in terms of Csiszár’s Φ-divergences; the tangent vectors are identified with the one-dimensional q-exponential models and q-deformations of the score function | |
dc.description.abstract | Letµbe a given probability measure andMµ the set ofµ-equivalent strictly positive probability densities -- In this paper we construct a Banach manifold on Mµ, modeled on the space L∞(p · µ) where p is a reference density, for the non-parametric q-exponential statistical models (Tsallis’s deformed exponential), where 0 < q < 1 is any real number -- This family is characterized by the fact that when q → 1, then the non-parametric exponential models are obtained and the manifold constructed by Pistone and Sempi is recovered, up to continuous embeddings on the modeling space -- The coordinate mappings of the manifold are given in terms of Csiszár’s Φ-divergences; the tangent vectors are identified with the one-dimensional q-exponential models and q-deformations of the score function | |
dc.language | eng | |
dc.publisher | ELSEVIER | |
dc.relation | Journal of Mathematical Analysis and Applications Volume 398, Issue 2, 15 February 2013, Pages 466–476 | |
dc.relation | http://dx.doi.org/10.1016/j.jmaa.2012.08.046 | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.rights | Acceso restringido | |
dc.rights | Copyright © 2012 Elsevier Ltd. All rights reserved. | |
dc.title | A q-exponential statistical Banach manifold | |
dc.type | article | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | publishedVersion | |