dc.contributordepartment:Universidad EAFIT. Escuela de Ciencias. Grupo de Investigación Análisis Funcional y Aplicaciones
dc.contributorAnálisis Funcional y Aplicaciones
dc.creatorQuiceno Echavarría, Héctor Román
dc.creatorLoaiza Ossa, Gabriel Ignacio
dc.date.accessioned2015-04-24T16:18:49Z
dc.date.accessioned2022-09-23T21:31:35Z
dc.date.available2015-04-24T16:18:49Z
dc.date.available2022-09-23T21:31:35Z
dc.date.created2015-04-24T16:18:49Z
dc.date.issued2013-02
dc.identifierG. Loaiza, H.R. Quiceno, A -exponential statistical Banach manifold, Journal of Mathematical Analysis and Applications, Volume 398, Issue 2, 15 February 2013, Pages 466-476, ISSN 0022-247X, http://dx.doi.org/10.1016/j.jmaa.2012.08.046. (http://www.sciencedirect.com/science/article/pii/S0022247X12006981)
dc.identifier0022-247X
dc.identifierhttp://hdl.handle.net/10784/5245
dc.identifier10.1016/j.jmaa.2012.08.046
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3530712
dc.description.abstractLetµbe a given probability measure andMµ the set ofµ-equivalent strictly positive probability densities -- In this paper we construct a Banach manifold on Mµ, modeled on the space L∞(p · µ) where p is a reference density, for the non-parametric q-exponential statistical models (Tsallis’s deformed exponential), where 0 < q < 1 is any real number -- This family is characterized by the fact that when q → 1, then the non-parametric exponential models are obtained and the manifold constructed by Pistone and Sempi is recovered, up to continuous embeddings on the modeling space -- The coordinate mappings of the manifold are given in terms of Csiszár’s Φ-divergences; the tangent vectors are identified with the one-dimensional q-exponential models and q-deformations of the score function
dc.description.abstractLetµbe a given probability measure andMµ the set ofµ-equivalent strictly positive probability densities -- In this paper we construct a Banach manifold on Mµ, modeled on the space L∞(p · µ) where p is a reference density, for the non-parametric q-exponential statistical models (Tsallis’s deformed exponential), where 0 < q < 1 is any real number -- This family is characterized by the fact that when q → 1, then the non-parametric exponential models are obtained and the manifold constructed by Pistone and Sempi is recovered, up to continuous embeddings on the modeling space -- The coordinate mappings of the manifold are given in terms of Csiszár’s Φ-divergences; the tangent vectors are identified with the one-dimensional q-exponential models and q-deformations of the score function
dc.languageeng
dc.publisherELSEVIER
dc.relationJournal of Mathematical Analysis and Applications Volume 398, Issue 2, 15 February 2013, Pages 466–476
dc.relationhttp://dx.doi.org/10.1016/j.jmaa.2012.08.046
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.rightsAcceso restringido
dc.rightsCopyright © 2012 Elsevier Ltd. All rights reserved.
dc.titleA q-exponential statistical Banach manifold
dc.typearticle
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typepublishedVersion


Este ítem pertenece a la siguiente institución