dc.contributorUniversidad EAFIT. Departamento de Ingeniería de Procesos
dc.contributorDesarrollo y Diseño de Procesos
dc.creatorAcosta, Diego A.
dc.creatorRestrepo, David
dc.creatorDurango, Sebastian
dc.creatorRuiz, Oscar E.
dc.date.accessioned2021-04-12T19:06:19Z
dc.date.available2021-04-12T19:06:19Z
dc.date.created2021-04-12T19:06:19Z
dc.date.issued2013-07-01
dc.identifier01770667
dc.identifier14355663
dc.identifierWOS;000320456400007
dc.identifierSCOPUS;2-s2.0-84879322908
dc.identifierhttp://hdl.handle.net/10784/28237
dc.identifier10.1007/s00366-012-0268-8
dc.description.abstractThis article discusses the use of design of computer experiments (DOCE) (i.e., experiments run with a computer model to find how a set of inputs affects a set of outputs) to obtain a force-displacement meta-model (i.e., a mathematical equation that summarizes and aids in analyzing the input-output data of a DOCE) of compliant mechanisms (CMs). The procedure discussed produces a force-displacement meta-model, or closed analytic vector function, that aims to control CMs in real-time. In our work, the factorial and space-filling DOCE meta-model of CMs is supported by finite element analysis (FEA). The protocol discussed is used to model the HexFlex mechanism functioning under quasi-static conditions. The HexFlex is a parallel CM for nano-manipulation that allows six degrees of freedom (x, y, z, ? x, ? y, ? z ) of its moving platform. In the multi-linear model fit of the HexFlex, the products or interactions proved to be negligible, yielding a linear model (i.e., linear in the inputs) for the operating range. The accuracy of the meta-model was calculated by conducting a set of computer experiments with random uniform distribution of the input forces. Three error criteria were recorded comparing the meta-model prediction with respect to the results of the FEA experiments by determining: (1) maximum of the absolute value of the error, (2) relative error, and (3) root mean square error. The maximum errors of our model are lower than high-precision manufacturing tolerances and are also lower than those reported by other researchers who have tried to fit meta-models to the HexFlex mechanism. © 2012 Springer-Verlag London Limited.
dc.languageeng
dc.publisherSPRINGER
dc.relationhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84879322908&doi=10.1007%2fs00366-012-0268-8&partnerID=40&md5=328f659cbdb607c12be1e78f5fadb987
dc.relationDOI;10.1007/s00366-012-0268-8
dc.relationWOS;000320456400007
dc.relationSCOPUS;2-s2.0-84879322908
dc.rightshttps://v2.sherpa.ac.uk/id/publication/issn/0177-0667
dc.sourceENGINEERING WITH COMPUTERS
dc.subjectDesign of computer experiments
dc.subjectHigh-precision manufacturing
dc.subjectMetamodeling
dc.subjectPlackett-Burman designs
dc.subjectQuasi-static conditions
dc.subjectRoot mean square errors
dc.subjectSix degrees of freedom
dc.subjectUniform design
dc.subjectCompliant mechanisms
dc.subjectDesign of experiments
dc.subjectExperiments
dc.subjectFinite element method
dc.subjectKnowledge management
dc.subjectMean square error
dc.subjectMechanical engineering
dc.subjectMechanisms
dc.subjectReal time control
dc.subjectMathematical models
dc.titleDesign of computer experiments applied to modeling of compliant mechanisms for real-time control
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeinfo:eu-repo/semantics/article
dc.typearticle
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typepublishedVersion


Este ítem pertenece a la siguiente institución