dc.contributorUniversidad EAFIT. Departamento de Ingeniería de Sistemas
dc.contributorI+D+I en Tecnologías de la Información y las Comunicaciones
dc.creatorMorales L.
dc.creatorAguilar J.
dc.creatorRosales A.
dc.creatorChávez D.
dc.creatorLeica P.
dc.creatorMorales L.
dc.creatorAguilar J.
dc.creatorRosales A.
dc.creatorChávez D.
dc.creatorLeica P.
dc.date.accessioned2021-04-12T20:55:49Z
dc.date.available2021-04-12T20:55:49Z
dc.date.created2021-04-12T20:55:49Z
dc.date.issued2020-01-01
dc.identifier15684946
dc.identifier18729681
dc.identifierWOS;000576776700014
dc.identifierSCOPUS;2-s2.0-85088635482
dc.identifierhttp://hdl.handle.net/10784/28650
dc.identifier10.1016/j.asoc.2020.106571
dc.description.abstractThis paper presents a soft computing technique for modeling and control of nonlinear systems using the online learning criteria. In order to obtain an accurate modeling, and therefore a controller with good performance, a method based on the fundamentals of the artificial intelligence algorithm, called LAMDA (Learning Algorithm for Multivariate Data Analysis), is proposed, with a modification of its structure and learning method that allows the creation of an adaptive approach. The novelty of this proposal is that for the first time LAMDA is used for fuzzy modeling and control of complex systems, which is a great advantage if the mathematical model is not available, partially known, or variable. The adaptive LAMDA consists of a training stage to establish initial parameters for the controller, and the application stage in which the control strategy is computed and updated using an online learning that evaluates the closed-loop system. We validate the method in several control tasks: (1) Regulation of mixing tank with variable dead-time (slow variable dynamics), (2) Regulation of a Heating, Ventilation and Air-Conditioning (HVAC) system (multivariable slow nonlinear dynamics), and (3) trajectory tracking of a mobile robot (multivariable fast nonlinear dynamics). The results of these experiments are analyzed and compared with other soft computing control techniques, demonstrating that the proposed method is able to perform an accurate control through the proposed learning technique. © 2020 Elsevier B.V.
dc.languageeng
dc.publisherElsevier BV
dc.relationhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85088635482&doi=10.1016%2fj.asoc.2020.106571&partnerID=40&md5=fc83418f8189bbe87ae90b97508efca5
dc.relationDOI;10.1016/j.asoc.2020.106571
dc.relationWOS;000576776700014
dc.relationSCOPUS;2-s2.0-85088635482
dc.rightshttps://v2.sherpa.ac.uk/id/publication/issn/1568-4946
dc.sourceAPPLIED SOFT COMPUTING
dc.subjectAdaptive control systems
dc.subjectAir conditioning
dc.subjectArtificial intelligence
dc.subjectClosed loop systems
dc.subjectControllers
dc.subjectDynamics
dc.subjectE-learning
dc.subjectLearning algorithms
dc.subjectMultivariable systems
dc.subjectMultivariant analysis
dc.subjectNonlinear systems
dc.subjectOnline systems
dc.subjectSoft computing
dc.subjectArtificial intelligence algorithms
dc.subjectControl strategies
dc.subjectLearning techniques
dc.subjectModeling and control
dc.subjectMultivariate data analysis
dc.subjectSoftcomputing techniques
dc.subjectTrajectory tracking
dc.subjectVariable dead time
dc.subjectLearning systems
dc.titleModeling and control of nonlinear systems using an Adaptive LAMDA approach
dc.typeinfo:eu-repo/semantics/article
dc.typearticle
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typepublishedVersion


Este ítem pertenece a la siguiente institución