dc.contributorUniversidad EAFIT. Departamento de Ingeniería Mecánica
dc.contributorLaboratorio CAD/CAM/CAE
dc.creatorRuiz, OE
dc.creatorCadavid, CA
dc.creatorGarcia, MJ
dc.creatorMartinod, R
dc.date.accessioned2021-04-16T21:24:55Z
dc.date.accessioned2022-09-23T21:17:26Z
dc.date.available2021-04-16T21:24:55Z
dc.date.available2022-09-23T21:17:26Z
dc.date.created2021-04-16T21:24:55Z
dc.date.issued2004-01-01
dc.identifier889864187
dc.identifierWOS;000228521000024
dc.identifierhttp://hdl.handle.net/10784/29485
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3527956
dc.description.abstractA Method is presented which combines statistical (Principal Component Analysis) and deterministic (Voronoi-Delone) methods to find Piecewise Linear approximations of curves C-i(u) in R-3 sampled with statistical noise. If the curves are self-intersecting, there are a finite number of points in which they are not 1-manifolds. Otherwise, they are 1-manifolds in all extents. The combination presented, of PCA and V-D methods, allows the recovery of 1-manifold approximations for C-i(u) for self-intersecting quasi-planar and non self-intersecting curves. In the later case the PCA alone succeeds in finding 1-manifold PL approximations for them. The algorithm implemented finds applications in contour and shape reconstruction from noisy data, subject to sampling errors or blockage.
dc.languageeng
dc.publisherACTA PRESS
dc.rightsACTA PRESS
dc.sourceProceedings Of The Seventh Iasted International Conference On Computer Graphics And Imaging
dc.titlePrincipal component analysis -PCA- and delone triangulations for PL approximation C-1-continuous 1-manifolds in R-N
dc.typeinfo:eu-repo/semantics/conferencePaper
dc.typeconferencePaper
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typepublishedVersion


Este ítem pertenece a la siguiente institución