dc.contributorGil González, Walter Julián
dc.contributorEscobar Mejía , Andrés
dc.creatorLópez Rodríguez, Karol Daniela
dc.date2022-03-01T19:45:21Z
dc.date2022-03-01T19:45:21Z
dc.date2022
dc.date.accessioned2022-09-23T21:04:48Z
dc.date.available2022-09-23T21:04:48Z
dc.identifierUniversidad Tecnológica de Pereira
dc.identifierRepositorio UTP
dc.identifierhttps://repositorio.utp.edu.co/home
dc.identifierhttps://hdl.handle.net/11059/13935
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3525036
dc.descriptionThe SST is one of the determining elements of the smart grid since it has the functionalities of a conventional transformer and allows an appropriate integration of distributed generation sources, loads, and energy storage devices with the traditional power grid.
dc.descriptionThe interest in updating electrical networks and the possibility of having power semiconductor devices with better features (e.g., reliability and efficiency) have encouraged the production of elements, such as a Solid-State Transformer (SST). The SST is one of the determining elements of the smart grid since it has the functionalities of a conventional transformer and allows an appropriate integration of distributed generation sources, loads, and energy storage devices with the traditional power grid, in addition to having system functionality advantages such as unity power factor, mitigation of sags and swells, improving system efficiency and quality, and allowing a bidirectional flow of power. For this reason, the SST could replace the traditional transformer, considering the advantages it offers functional and physicals (less weight and volume). The intelligent energy management of an SST in a smart grid is feasible through the regulation of the power flow in its central device so-called Dual Active Bridge (DAB), which due to its topology (two half-bridge and a high-frequency link) make possible the bidirectionally on the power flow and permit the interconnection of renewable sources and other elements dc into a smart grid, and that in this way the advantages of SST can be made available within a power system. Hence, this work focuses on proposing a current controller based on Proportional-Integral (PI) passivity that regulates the power flow bidirectionally in a DAB. The proposed controller guarantees the system’s stability in a closed-loop, maintaining its passive properties. In addition, this controller preserves the simplicity of a PI control with high performance and robustness, where its control law is simple and does not depend on the converter’s parameters
dc.descriptionMaestría
dc.descriptionMagíster en Ingeniería Eléctrica
dc.descriptionTable of Contents 1 Introduction 7 1.1 Definition of the Problem . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.1 Overall objective . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.2 Specific objectives . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.6 Document structure . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Dynamical Model of a DAB 14 2.1 DAB Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 DAB Model as a Port-Hamiltonian System . . . . . . . . . . . . . 16 3 PI Passivity-Based Control 18 3.1 Port-Hamiltonian Passive System . . . . . . . . . . . . . . . . . . 18 3.2 PI-PBC Controller Design and Stability Analysis . . . . . . . . . . 19 3.3 DAB Controller Design . . . . . . . . . . . . . . . . . . . . . . . . 20 4 Simulations and Experimental Results 22 5 Conclusions 37 6 Appendices 43 6.1 Appendix A. Gate drivers schematic. . . . . . . . . . . . . . . . . 43 6.2 Appendix B. Voltage signal conditioning circuit. . . . . . . . . . . 44 6.3 Appendix C. Current signal conditioning circuit. . . . . . . . . . . 44 6.4 Appendix D. PI-PBC control diagram for DAB converter and C2000 processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6.5 Appendix E. Classical PI control diagram for DAB converter and C2000 processor . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
dc.format46 pag.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad Tecnológica de Pereira
dc.publisherFacultad de Ingenierías
dc.publisherPereira
dc.publisherMaestría en Ingeniería Eléctrica
dc.relationB. Zeng, J. Zhang, X. Yang, J. Wang, J. Dong, and Y. Zhang, “Integrated planning for transition to low-carbon distribution system with renewable energy generation and demand response,” IEEE Transactions on Power Sys tems, vol. 29, no. 3, pp. 1153–1165, 2013.
dc.relationC. Kang, T. Zhou, Q. Chen, J. Wang, Y. Sun, Q. Xia, and H. Yan, “Carbon emission flow from generation to demand: A network-based model,” IEEE Transactions on Smart Grid, vol. 6, no. 5, pp. 2386–2394, 2015.
dc.relationW. E. S. W. A. Rashid, P. J. Ker, M. Z. B. Jamaludin, M. M. A. Gamel, H. J. Lee, and N. B. Abd Rahman, “Recent development of thermophotovoltaic system for waste heat harvesting application and potential implementa tion in thermal power plant,” IEEE Access, vol. 8, pp. 105 156–105 168, 2020.
dc.relationJ. Lorente de la Rubia, “Estudio sobre el estado actual de las smart grids,” B.S. thesis, 2011.
dc.relationN. Hatziargyriou, Microgrids: architectures and control. John Wiley & Sons, 2014.
dc.relationW. Linyu, W. Xue, and S. Qiang, “Cost benefit analysis of combined storage and distribution generation systems in smart distribution grid,” 2015.
dc.relationH. Farhangi, “The path of the smart grid. ieee power energy mag 8 (1): 18–28,” 2010.
dc.relationB. Kroposki, B. Johnson, Y. Zhang, V. Gevorgian, P. Denholm, B.-M. Hodge, and B. Hannegan, “Achieving a 100% renewable grid: Operating electric power systems with extremely high levels of variable renewable energy,” IEEE Power and energy magazine, vol. 15, no. 2, pp. 61–73, 2017.
dc.relationN. Rugthaicharoencheep and M. Boonthienthong, “Smart grid for energy management on distribution system with distributed generation,” in 2012 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). IEEE, 2012, pp. 165–169.
dc.relationT. C. Dias, L. A. Roque, and P. F. Ribeiro, “Power electronics in the context of renewables, power quality and smart grids,” in 2016 17th International Conference on Harmonics and Quality of Power (ICHQP). IEEE, 2016, pp. 170–175.
dc.relationW. Rodrigues, L. Morais, T. Oliveira, R. Santana, A. Cota, and W. Silva, “Analysis of solid state transformer based microgrid system,” in 2016 12th IEEE International Conference on Industry Applications (INDUSCON). IEEE, 2016, pp. 1–6.
dc.relationM. A. Hannan, P. J. Ker, M. S. H. Lipu, Z. H. Choi, M. S. A. Rahman, K. M. Muttaqi, and F. Blaabjerg, “State of the art of solid-state transformers: Ad vanced topologies, implementation issues, recent progress and improve ments,” Ieee Access, vol. 8, pp. 19 113–19 132, 2020
dc.relationX. She, A. Q. Huang, and R. Burgos, “Review of solid-state transformer technologies and their application in power distribution systems,” IEEE journal of emerging and selected topics in power electronics, vol. 1, no. 3, pp. 186–198, 2013.
dc.relationR. J. G. Montoya, A. Mallela, and J. C. Balda, “An evaluation of se lected solid-state transformer topologies for electric distribution systems,” in 2015 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2015, pp. 1022–1029.
dc.relationS. Hambridge, A. Q. Huang, and R. Yu, “Solid state transformer (sst) as an energy router: Economic dispatch based energy routing strategy,” in 2015 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2015, pp. 2355–2360.
dc.relationM. Khazraei, V. A. K. Prabhala, R. Ahmadi, and M. Ferdowsi, “Solid-state transformer stability and control considerations,” in 2014 IEEE Applied Power Electronics Conference and Exposition-APEC 2014. IEEE, 2014, pp. 2237–2244.
dc.relationG. Ortiz, M. Leibl, J. Kolar, and O. Apeldoorn, “Medium frequency trans formers for solid-state-transformer applications—design and experimental verification,” in 2013 IEEE 10th International Conference on Power Electron ics and Drive Systems (PEDS). IEEE, 2013, pp. 1285–1290
dc.relationS. Shao, L. Chen, Z. Shan, F. Gao, H. Chen, D. Sha, and T. Dragiˇcevi´c, “Modeling and advanced control of dual-active-bridge dc–dc converters: A review,” IEEE Transactions on Power Electronics, vol. 37, no. 2, pp. 1524– 1547, 2022.
dc.relationX. She, X. Yu, F. Wang, and A. Q. Huang, “Design and demonstration of a 3.6-kV–120-V/10-kVA solid-state transformer for smart grid application,” IEEE Transactions on Power Electronics, vol. 29, no. 8, pp. 3982–3996, 2013.
dc.relationT. Zhao, G. Wang, S. Bhattacharya, and A. Q. Huang, “Voltage and power balance control for a cascaded h-bridge converter-based solid-state trans former,” IEEE Transactions on Power Electronics, vol. 28, no. 4, pp. 1523– 1532, 2012
dc.relationX. Yu, X. She, A. Huang, and L. Liu, “Distributed power balance strategy for DC/DC converters in solid state transformer,” in 2014 IEEE Applied Power Electronics Conference and Exposition-APEC 2014. IEEE, 2014, pp. 989–994.
dc.relationG. G. Facchinello, L. L. Brighenti, S. L. Brockveld, D. C. Martins, and W. M. Dos Santos, “Closed-loop operation and control strategy for the dual active half bridge ac-ac converter,” in 2017 IEEE 8th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). IEEE, 2017, pp. 1–7.
dc.relationL. Wang, D. Zhang, Y. Wang, B. Wu, and H. S. Athab, “Power and volt age balance control of a novel three-phase solid-state transformer using multilevel cascaded h-bridge inverters for microgrid applications,” IEEE Transactions on Power Electronics, vol. 31, no. 4, pp. 3289–3301, 2015
dc.relationF. An, W. Song, B. Yu, and K. Yang, “Model predictive control with power self-balancing of the output parallel dab dc–dc converters in power elec tronic traction transformer,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 4, pp. 1806–1818, 2018.
dc.relationQ. Xiao, L. Chen, H. Jia, P. W. Wheeler, and T. Dragiˇcevi´c, “Model predic tive control for dual active bridge in naval dc microgrids supplying pulsed power loads featuring fast transition and online transformer current min imization,” IEEE Transactions on Industrial Electronics, vol. 67, no. 6, pp. 5197–5203, 2020.
dc.relationH. Zhang, Y. Li, Z. Li, C. Zhao, F. Gao, Y. Hu, L. Luo, K. Luan, and P. Wang, “Model predictive control of input-series output-parallel dual active bridge converters based dc transformer,” IET Power Electronics, vol. 13, no. 6, pp. 1144–1152, 2020.
dc.relationW. Song, N. Hou, and M. Wu, “Virtual direct power control scheme of dual active bridge dc–dc converters for fast dynamic response,” IEEE Transac tions on Power Electronics, vol. 33, no. 2, pp. 1750–1759, 2018.
dc.relationB. Zhao, Q. Song, W. Liu, G. Liu, and Y. Zhao, “Universal high-frequency link characterization and practical fundamental-optimal strategy for dual active-bridge dc-dc converter under pwm plus phase-shift control,” IEEE Transactions on Power Electronics, vol. 30, no. 12, pp. 6488–6494, 2015.
dc.relationY. Shi, R. Li, Y. Xue, and H. Li, “Optimized operation of current-fed dual active bridge dc–dc converter for pv applications,” IEEE Transactions on Industrial Electronics, vol. 62, no. 11, pp. 6986–6995, 2015.
dc.relationW. Gil-Gonzalez, O. D. Montoya, C. Restrepo, and J. C. Hern ´ andez, “Sen- ´ sorless Adaptive Voltage Control for Classical DC-DC Converters Feeding Unknown Loads: A Generalized PI Passivity-Based Approach,” Sensors, vol. 21, no. 19, p. 6367, 2021.
dc.relationM. Zhang, P. Borja, R. Ortega, Z. Liu, and H. Su, “Pid passivity-based con trol of port-hamiltonian systems,” IEEE Transactions on Automatic Control, vol. 63, no. 4, pp. 1032–1044, 2018.
dc.relationW. J. Gil-Gonzalez, A. Garces, O. B. Fosso, and A. Escobar-Mej ´ ´ıa, “Passivity-based control of power systems considering hydro-turbine with surge tank,” IEEE Transactions on Power Systems, vol. 35, no. 3, pp. 2002– 2011, 2020.
dc.relationO. D. Montoya, W. Gil-Gonzalez, and A. Garces, “Control for eess in three- ´ phase microgrids under time-domain reference frame via pbc theory,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 12, pp. 2007–2011, 2019.
dc.relationO. D. Montoya, W. Gil-Gonzalez, and F. M. Serra, “Pbc approach for smes ´ devices in electric distribution networks,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 12, pp. 2003–2007, 2018.
dc.relationO. D. Montoya, J. E. Campillo, W. Gil-Gonzalez, and A. Garces, “Integra- ´ tion of pv arrays in dc power grids via unidirectional boost converters: a pbc approach,” in 2018 IEEE 9th Power, Instrumentation and Measurement Meeting (EPIM). IEEE, 2018, pp. 1–6.
dc.relationK. Lopez-Rodr ´ ´ıguez, A. Escobar-Mej´ıa, E. Piedrahita-Echavarria, and W. Gil-Gonzalez, “Passivity-based current control of a dual-active bridge to ´ improve the dynamic response of a solid-state transformer during power and voltage variations,” in 2020 IEEE 11th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), 2020, pp. 230–235.
dc.relation“https://www.minenergia.gov.co/cartilla-mision-transformacion energetica.
dc.relationW. McMurray, “The thyristor electronic transformer: a power converter using a high-frequency link,” IEEE Transactions on Industry and General Applications, vol. IGA-7, no. 4, pp. 451–457, 1971.
dc.relationX. Yu, X. She, X. Zhou, and A. Q. Huang, “Power management for DC microgrid enabled by solid-state transformer,” IEEE Transactions on Smart Grid, vol. 5, no. 2, pp. 954–965, 2013.
dc.relationA. Tong, L. Hang, G. Li, X. Jiang, and S. Gao, “Modeling and analysis of a dual-active-bridge-isolated bidirectional dc/dc converter to minimize rms current with whole operating range,” IEEE Transactions on Power Electron ics, vol. 33, no. 6, pp. 5302–5316, 2018.
dc.relationN. Hou, W. Song, and M. Wu, “Minimum-current-stress scheme of dual ac tive bridge dc–dc converter with unified phase-shift control,” IEEE Trans actions on Power Electronics, vol. 31, no. 12, pp. 8552–8561, 2
dc.relationK. Zhang, Z. Shan, and J. Jatskevich, “Large-and small-signal average value modeling of dual-active-bridge DC–DC converter considering power losses,” IEEE Transactions on Power Electronics, vol. 32, no. 3, pp. 1964– 1974, 2016.
dc.relationA. Tong, L. Hang, G. Li, and J. Huang, “Nonlinear characteristics of DAB converter and linearized control method,” in 2018 IEEE Applied Power Elec tronics Conference and Exposition (APEC). IEEE, 2018, pp. 331–337.
dc.relationR. Ortega and L. P. Borja, “New results on control by interconnection and energy-balancing passivity-based control of port-hamiltonian systems,” in 53rd IEEE Conference on Decision and Control. IEEE, 2014, pp. 2346– 2351.
dc.relationR. Ortega, A. Van Der Schaft, F. Castanos, and A. Astolfi, “Control by inter connection and standard passivity-based control of port-hamiltonian sys tems,” IEEE Transactions on Automatic control, vol. 53, no. 11, pp. 2527– 2542, 2008.
dc.relationR. Cisneros, M. Pirro, G. Bergna, R. Ortega, G. Ippoliti, and M. Molinas, “Global tracking passivity-based pi control of bilinear systems: Applica tion to the interleaved boost and modular multilevel converters,” Control Engineering Practice, vol. 43, pp. 109–119, 2015.
dc.relationO. Sprangers, R. Babuˇska, S. P. Nageshrao, and G. A. D. Lopes, “Rein forcement learning for port-hamiltonian systems,” IEEE Transactions on Cybernetics, vol. 45, no. 5, pp. 1017–1027, 2015.
dc.relationW. Gil-Gonzalez, O. D. Montoya, and A. Garces, “Control of a smes for mit- ´ igating subsynchronous oscillations in power systems: A pbc-pi approach,” Journal of Energy Storage, vol. 20, pp. 163–172, 2018.
dc.relationL. Perko, “Differential equations and dynamical systems,” 2013.
dc.relationD. Gonzalez Agudelo, “Dise ´ no y construcci ˜ on de un convertidor dc-dc para ´ un transformador inteligente,” 2017.
dc.rightsManifiesto (Manifestamos) en este documento la voluntad de autorizar a la Biblioteca Jorge Roa Martínez de la Universidad Tecnológica de Pereira la publicación en el Repositorio institucional (http://biblioteca.utp.edu.co), la versión electrónica de la OBRA titulada: ________________________________________________________________________________________________ ________________________________________________________________________________________________ ________________________________________________________________________________________________ La Universidad Tecnológica de Pereira, entidad académica sin ánimo de lucro, queda por lo tanto facultada para ejercer plenamente la autorización anteriormente descrita en su actividad ordinaria de investigación, docencia y publicación. La autorización otorgada se ajusta a lo que establece la Ley 23 de 1982. Con todo, en mi (nuestra) condición de autor (es) me (nos) reservo (reservamos) los derechos morales de la OBRA antes citada con arreglo al artículo 30 de
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.subjectSmart grids
dc.subjectProportional-integral controller
dc.subjectPI control
dc.subjectDual active bridge
dc.subjectSolid-state transformer
dc.subjectPassivity-based control
dc.titleDesign and implementation of a passivity-based controller to regulate the power flow in a DAB of a SST
dc.typeTrabajo de grado - Maestría
dc.typehttp://purl.org/coar/resource_type/c_bdcc
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.typeText
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typeinfo:eu-repo/semantics/acceptedVersion


Este ítem pertenece a la siguiente institución