dc.contributorUniversidad EAFIT. Departamento de Ciencias
dc.contributorMatemáticas y Aplicaciones
dc.creatorQuiceno, H. R.
dc.creatorArias, C.
dc.creatorQuiceno, H. R.
dc.creatorArias, C.
dc.date.accessioned2021-04-12T14:04:23Z
dc.date.accessioned2022-09-23T20:37:43Z
dc.date.available2021-04-12T14:04:23Z
dc.date.available2022-09-23T20:37:43Z
dc.date.created2021-04-12T14:04:23Z
dc.date.issued2019-01-15
dc.identifier00963003
dc.identifier18735649
dc.identifierWOS;000446451300019
dc.identifierSCOPUS;2-s2.0-85053778195
dc.identifierhttp://hdl.handle.net/10784/27718
dc.identifier10.1016/j.amc.2018.08.047
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3518339
dc.description.abstractThe construction of images of the Earth's interior using methods as reverse time migration (RTM) or full wave inversion (FWI) strongly depends on the numerical solution of the wave equation. A mathematical expression of the numerical stability and dispersion for a particular wave equation used must be known in order to avoid unbounded numbers of amplitudes. In case of the acoustic wave equation, the Courant–Friedrich–Lewy (CFL) condition is a necessary but is not a sufficient condition for convergence. Thus, we need to search other types of expression for stability condition. In seismic wave problems, the generalized Riemannian wave equation is used to model their propagation in domains with curved meshes which is suitable for zones with rugged topography. However, only a heuristic version of stability condition was reported in the literature for this equation. We derived an expression for stability condition and numerical dispersion analysis for the Riemannian acoustic wave equation in a two-dimensional medium and analyzed its implications in terms of computational cost. © 2018 Elsevier Inc.
dc.languageeng
dc.publisherELSEVIER SCIENCE INC
dc.relationhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85053778195&doi=10.1016%2fj.amc.2018.08.047&partnerID=40&md5=83d6d6bdaebc815eb80d450c001b4e65
dc.rightshttps://v2.sherpa.ac.uk/id/publication/issn/0096-3003
dc.sourceAPPLIED MATHEMATICS AND COMPUTATION
dc.subjectAcoustic wave propagation
dc.subjectAcoustic waves
dc.subjectAcoustics
dc.subjectDispersion (waves)
dc.subjectFinite difference method
dc.subjectNumerical methods
dc.subjectSeismic prospecting
dc.subjectWave equations
dc.subjectComputational costs
dc.subjectFinite difference scheme
dc.subjectMathematical expressions
dc.subjectNeumann
dc.subjectNumerical dispersions
dc.subjectNumerical solution
dc.subjectReverse time migrations
dc.subjectStability condition
dc.subjectStability criteria
dc.titleAnalysis of the stability and dispersion for a Riemannian acoustic wave equation
dc.typearticle
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typepublishedVersion


Este ítem pertenece a la siguiente institución