dc.contributor | Orozco Echeverry, César Augusto | |
dc.creator | Ramírez Mendoza, Durley Yalile | |
dc.date.accessioned | 2022-08-06T00:11:57Z | |
dc.date.accessioned | 2022-09-23T20:28:26Z | |
dc.date.available | 2022-08-06T00:11:57Z | |
dc.date.available | 2022-09-23T20:28:26Z | |
dc.date.created | 2022-08-06T00:11:57Z | |
dc.date.issued | 2022 | |
dc.identifier | http://hdl.handle.net/10784/31580 | |
dc.identifier | 338.642 R173 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3514551 | |
dc.description.abstract | This research created a new grouping alternative using machine learning tools such as K-means
and agglomerative clustering models, based on financial information from 2016 to 2019 of
10,001 Colombian SMEs. From these models twelve clusters originated that have 98.44% of the
evaluated data and it was determined that the model that presented the best clustering result was
the agglomerative model which generates the following main groups: a first group with negative
margins and a debt exceeding 61%, a second group starting with a range between -10% to 40% of
its margins and a debt below 60%, and a third group with positive margins and a debt between 11
and 80%. Finally, these groups create strategies according to the economic conditions of each of
them. | |
dc.language | spa | |
dc.publisher | Universidad EAFIT | |
dc.publisher | Maestría en Administración Financiera | |
dc.publisher | Escuela de Economía y Finanzas | |
dc.publisher | Bogotá | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Acceso abierto | |
dc.rights | Todos los derechos reservados | |
dc.subject | Pymes | |
dc.subject | Algoritmos no supervisados | |
dc.subject | Clúster | |
dc.subject | Clúster K-means | |
dc.subject | Clúster aglomerativo | |
dc.title | Métodos de machine learning con algoritmos de clúster no supervisados, una alternativa de segmentación de las pymes colombianas para plantear estrategias de acuerdo con sus condiciones económicas | |
dc.type | masterThesis | |
dc.type | info:eu-repo/semantics/masterThesis | |