| dc.contributor | Orozco Echeverry, César Augusto |  | 
| dc.creator | Ramírez Mendoza, Durley Yalile |  | 
| dc.date.accessioned | 2022-08-06T00:11:57Z |  | 
| dc.date.accessioned | 2022-09-23T20:28:26Z |  | 
| dc.date.available | 2022-08-06T00:11:57Z |  | 
| dc.date.available | 2022-09-23T20:28:26Z |  | 
| dc.date.created | 2022-08-06T00:11:57Z |  | 
| dc.date.issued | 2022 |  | 
| dc.identifier | http://hdl.handle.net/10784/31580 |  | 
| dc.identifier | 338.642 R173 |  | 
| dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3514551 |  | 
| dc.description.abstract | This research created a new grouping alternative using machine learning tools such as K-means 
and agglomerative clustering models, based on financial information from 2016 to 2019 of 
10,001 Colombian SMEs. From these models twelve clusters originated that have 98.44% of the 
evaluated data and it was determined that the model that presented the best clustering result was 
the agglomerative model which generates the following main groups: a first group with negative 
margins and a debt exceeding 61%, a second group starting with a range between -10% to 40% of 
its margins and a debt below 60%, and a third group with positive margins and a debt between 11 
and 80%. Finally, these groups create strategies according to the economic conditions of each of 
them. |  | 
| dc.language | spa |  | 
| dc.publisher | Universidad EAFIT |  | 
| dc.publisher | Maestría en Administración Financiera |  | 
| dc.publisher | Escuela de Economía y Finanzas |  | 
| dc.publisher | Bogotá |  | 
| dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ |  | 
| dc.rights | info:eu-repo/semantics/openAccess |  | 
| dc.rights | Acceso abierto |  | 
| dc.rights | Todos los derechos reservados |  | 
| dc.subject | Pymes |  | 
| dc.subject | Algoritmos no supervisados |  | 
| dc.subject | Clúster |  | 
| dc.subject | Clúster K-means |  | 
| dc.subject | Clúster aglomerativo |  | 
| dc.title | Métodos de machine learning con algoritmos de clúster no supervisados, una alternativa de segmentación de las pymes colombianas para plantear estrategias de acuerdo con sus condiciones económicas |  | 
| dc.type | masterThesis |  | 
| dc.type | info:eu-repo/semantics/masterThesis |  |