dc.contributorUniversidad EAFIT. Departamento de Ingeniería Mecánica
dc.contributorMecatrónica y Diseño de Máquinas
dc.creatorArango, Ivan
dc.creatorTaborda, John Alexander
dc.creatorArango, Ivan
dc.creatorTaborda, John Alexander
dc.date.accessioned2021-04-16T20:20:47Z
dc.date.accessioned2022-09-23T20:27:54Z
dc.date.available2021-04-16T20:20:47Z
dc.date.available2022-09-23T20:27:54Z
dc.date.created2021-04-16T20:20:47Z
dc.date.issued2009-03-01
dc.identifier02181274
dc.identifier17936551
dc.identifierWOS;000266507100011
dc.identifierSCOPUS;2-s2.0-67649875354
dc.identifierhttp://hdl.handle.net/10784/29298
dc.identifier10.1142/S0218127409023391
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3514328
dc.description.abstractIn this paper, we present a novel method to analyze the behavior of discontinuous piecewise-smooth autonomous systems (denominated Filippov systems) in the planar neighborhood of the discontinuity boundary (DB). The method uses the evaluation of the vector fields on DB to analyze the nonsmooth local dynamics of the Filippov system without the integration of the ODE sets. The method is useful in the detection of nonsmooth bifurcations in Filippov systems. We propose a classification of the points, events and events combinations on DB. This classification is more complete in comparison with the others previously reported. Additional characteristics as flow direction and sliding stability are included explicitly. The lines and the points are characterized with didactic symbols and the exclusive conditions for their existence are based on geometric criterions. Boolean-valued functions are used to formulate the conditions of existence. Different problems are analyzed with the proposed methodology. © 2009 World Scientific Publishing Company.
dc.languageeng
dc.publisherWORLD SCIENTIFIC PUBL CO PTE LTD
dc.relationhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-67649875354&doi=10.1142%2fS0218127409023391&partnerID=40&md5=d804dfcf05b7609d77eebbcb55e89763
dc.rightshttps://v2.sherpa.ac.uk/id/publication/issn/0218-1274
dc.sourceINTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
dc.subjectMathematical techniques
dc.subjectAutonomous systems
dc.subjectBifurcation theory
dc.subjectFilippov systems
dc.subjectNonsmooth bifurcations
dc.subjectPiecewise smooth
dc.subjectPiecewise-smooth systems
dc.subjectSliding bifurcation
dc.subjectSliding stability
dc.subjectBifurcation (mathematics)
dc.titleIntegration-Free analysis of nonsmooth local dynamics in planar filippov systems
dc.typeinfo:eu-repo/semantics/article
dc.typearticle
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typepublishedVersion


Este ítem pertenece a la siguiente institución