dc.contributorUniversidad EAFIT. Departamento de Ciencias
dc.contributorCiencias Biológicas y Bioprocesos (CIBIOP)
dc.creatorPosada, L.F.
dc.creatorVelasquez-Lopez, A.
dc.creatorPosada, L.F.
dc.creatorVelasquez-Lopez, A.
dc.date.accessioned2021-03-23T20:14:51Z
dc.date.accessioned2022-09-23T20:24:35Z
dc.date.available2021-03-23T20:14:51Z
dc.date.available2022-09-23T20:24:35Z
dc.date.created2021-03-23T20:14:51Z
dc.date.issued2016-01-01
dc.identifier21530858
dc.identifierSCOPUS;2-s2.0-85006516034
dc.identifierhttp://hdl.handle.net/10784/26860
dc.identifier10.1109/IROS.2016.7759392
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3512835
dc.description.abstractThis paper presents a spatial layout recovery approach from single omnidirectional images. Vertical structures in the scene are extracted via classification from heterogeneous features computed at the superpixel level. Vertical surfaces are further classified according to their main orientation by fusing oriented line features, floor-wall boundary features and histogram of oriented gradients (HOG) with a Random Forest classifier. Oriented line features are used to build an orientation map that considers the main vanishing points. The floor-wall boundary feature attempts to reconstruct the scene shape as if it were observed from a bird's-eye view. Finally, the HOG descriptors are aggregated per superpixel and summarize the gradient distribution at homogeneous appearance regions. Compared to existing methods in the literature which rely only on corners or lines, our method gains statistical support from multiple cues aggregated per superpixel which provide more robustness against noise, occlusion, and clutter. © 2016 IEEE.
dc.languageeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relationhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85006516034&doi=10.1109%2fIROS.2016.7759392&partnerID=40&md5=3ed573c83650db1b88c2c8fabea0a7fb
dc.rightsInstitute of Electrical and Electronics Engineers Inc.
dc.sourceIEEE International Conference on Intelligent Robots and Systems
dc.titleSpatial layout and surface reconstruction from omnidirectional images
dc.typeinfo:eu-repo/semantics/conferencePaper
dc.typeconferencePaper
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typepublishedVersion


Este ítem pertenece a la siguiente institución