info:eu-repo/semantics/conferencePaper
Possible topological quantum computation via khovanov homology: D-brane topological quantum computer
Fecha
2009-01-01Registro en:
0277786X
1996756X
WOS;000311280400019
SCOPUS;2-s2.0-69849093047
10.1117/12.818551
Autor
Vélez, M.
Ospina, J.
Vélez, M.
Ospina, J.
Institución
Resumen
A model of a D-Brane Topological Quantum Computer (DBTQC) is presented and sustained. The model isbased on four-dimensional TQFTs of the Donaldson-Witten and Seiber-Witten kinds. It is argued that the DBTQC is able to compute Khovanov homology for knots, links and graphs. The DBTQC physically incorporates the mathematical process of categorification according to which the invariant polynomials for knots, links and graphs such as Jones, HOMFLY, Tutte and Bollobás-Riordan polynomials can be computed as the Euler characteristics corresponding to special homology complexes associated with knots, links and graphs. The DBTQC is conjectured as a powerful universal quantum computer in the sense that the DBTQC computes Khovanov homology which is considered like powerful that the Jones polynomial. © 2009 SPIE.