dc.creatorShi, Peng
dc.creatorDong, Yinqiao
dc.creatorYan, Huanchang
dc.creatorZhao, Chenkai
dc.creatorLi, Xiaoyang
dc.creatorLiu, Wei
dc.creatorHe, Miao
dc.creatorTang, Shixing
dc.creatorXi, Shuhua
dc.date.accessioned2020-07-15T16:33:16Z
dc.date.accessioned2022-09-23T18:49:44Z
dc.date.available2020-07-15T16:33:16Z
dc.date.available2022-09-23T18:49:44Z
dc.date.created2020-07-15T16:33:16Z
dc.identifier0048-9697
dc.identifierhttps://doi.org/10.1016/j.scitotenv.2020.138890
dc.identifierhttp://hdl.handle.net/20.500.12010/10563
dc.identifierhttps://doi.org/10.1016/j.scitotenv.2020.138890
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3508125
dc.description.abstractA COVID-19 outbreak emerged in Wuhan, China at the end of 2019 and developed into a global pandemic during March 2020. The effects of temperature on the dynamics of the COVID-19 epidemic in China are unknown. Data on COVID-19 daily confirmed cases and daily mean temperatures were collected from 31 provincial-level regions in mainland China between Jan. 20 and Feb. 29, 2020. Locally weighted regression and smoothing scatterplot (LOESS), distributed lag nonlinear models (DLNMs), and random-effects meta-analysis were used to examine the relationship between daily confirmed cases rate of COVID-19 and temperature conditions. The daily number of new cases peaked on Feb. 12, and then decreased. The daily confirmed cases rate of COVID-19 had a biphasic relationship with temperature (with a peak at 10 °C), and the daily incidence of COVID-19 decreased at values below and above these values. The overall epidemic intensity of COVID-19 reduced slightly following days with higher temperatures with a relative risk (RR) was 0.96 (95% CI: 0.93, 0.99). A random-effect metaanalysis including 28 provinces in mainland China, we confirmed the statistically significant association between temperature and RR during the study period (Coefficient = −0.0100, 95% CI: −0.0125, −0.0074). The DLNMs in Hubei Province (outside of Wuhan) andWuhan showed similar patterns of temperature. Additionally, a modified susceptible-exposed-infectious-recovered (M-SEIR) model, with adjustment for climatic factors, was used to provide a complete characterization of the impact of climate on the dynamics of the COVID-19 epidemic.
dc.publisherScience Direct
dc.rightsinfo:eu-repo/semantics/openAccess
dc.sourcereponame:Expeditio Repositorio Institucional UJTL
dc.sourceinstname:Universidad de Bogotá Jorge Tadeo Lozano
dc.subjectCOVID-19
dc.subjectTemperature
dc.subjectDynamic transmission model
dc.titleImpact of temperature on the dynamics of the COVID-19 outbreak in China


Este ítem pertenece a la siguiente institución