dc.creatorJanya-anurak, Chettapong
dc.date.accessioned2021-02-22T20:25:07Z
dc.date.accessioned2022-09-23T18:43:00Z
dc.date.available2021-02-22T20:25:07Z
dc.date.available2022-09-23T18:43:00Z
dc.date.created2021-02-22T20:25:07Z
dc.identifier9783731506423
dc.identifierhttps://directory.doabooks.org/handle/20.500.12854/47993
dc.identifierhttp://hdl.handle.net/20.500.12010/17600
dc.identifier10.5445/KSP/1000066940
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3506104
dc.description.abstractIn this work, the Uncertainty Quantification (UQ) approaches combined systematically to analyze and identify systems. The generalized Polynomial Chaos (gPC) expansion is applied to reduce the computational effort. The framework using gPC based on Bayesian UQ proposed in this work is capable of analyzing the system systematically and reducing the disagreement between the model predictions and the measurements of the real processes to fulfill user defined performance criteria.
dc.languageeng
dc.publisherKIT Scientific Publishing
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAbierto (Texto Completo)
dc.rightshttps://creativecommons.org/licenses/by-sa/4.0/
dc.subjectParameterschätzung Uncertainty Quantification
dc.subjectParameter estimation
dc.subjectVerteilt-parametrische Systeme
dc.titleFramework for Analysis and Identification of Nonlinear Distributed Parameter Systems using Bayesian Uncertainty Quantification based on Generalized Polynomial Chaos


Este ítem pertenece a la siguiente institución