dc.creatorBaklanov, Alexander
dc.creatorZhang, Yang
dc.date.accessioned2020-11-24T20:55:19Z
dc.date.accessioned2022-09-23T18:42:39Z
dc.date.available2020-11-24T20:55:19Z
dc.date.available2022-09-23T18:42:39Z
dc.date.created2020-11-24T20:55:19Z
dc.identifier2589-7918
dc.identifierhttps://doi.org/10.1016/j.glt.2020.11.001
dc.identifierhttp://hdl.handle.net/20.500.12010/16013
dc.identifierhttps://doi.org/10.1016/j.glt.2020.11.001
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3505991
dc.description.abstractThe importance of and interest to research and investigations of atmospheric composition and its modeling for different applications are substantially increased. Air quality forecast (AQF) and assessment systems help decision makers to improve air quality and public health, mitigate the occurrence of acute air pollution episodes, particularly in urban areas, and reduce the associated impacts on agriculture, ecosystems and climate. Advanced approaches in AQF combine an ensemble of state-of-the-art models, high-resolution emission inventories, satellite observations, and surface measurements of most relevant chemical species to provide hindcasts, analyses, and forecasts from global to regional air pollution and downscaling for selected countries, regions, and urban areas. Based on published reviews and recent analyses, the article discusses main gaps, challenges, applications and advances, main trends and research needs in further advancements of atmospheric composition and air quality modeling and forecasting.
dc.languageeng
dc.publisherGlobal Transitions
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAbierto (Texto Completo)
dc.sourcereponame:Expeditio Repositorio Institucional UJTL
dc.sourceinstname:Universidad de Bogotá Jorge Tadeo Lozano
dc.subjectAerosols
dc.subjectAir pollution
dc.subjectAir quality
dc.subjectAtmospheric chemistry
dc.subjectDispersion
dc.titleAdvances in air quality modeling and forecasting


Este ítem pertenece a la siguiente institución