dc.contributorPuyana Hegedus, Mónica
dc.creatorMarchena Sánchez, Alexandra Jeanneth
dc.date.accessioned2022-02-28T21:14:19Z
dc.date.accessioned2022-09-23T18:23:14Z
dc.date.available2022-02-28T21:14:19Z
dc.date.available2022-09-23T18:23:14Z
dc.date.created2022-02-28T21:14:19Z
dc.identifierhttp://hdl.handle.net/20.500.12010/25097
dc.identifierhttp://expeditio.utadeo.edu.co
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3499854
dc.description.abstractLa actual preocupación a nivel mundial por la resistencia microbiana a los antibióticos (RMA) ha llevado a la restricción de uso de antibióticos como promotores de crecimiento AGP en los animales destinados para el consumo humano. Esta regulación viene siendo implementada por varios países, Suecia fue el primer país que ajustó todas sus leyes sobre uso de AGP y en 2006, la Unión Europea impuso una prohibición completa de todos los AGP (Cardinal et al. 2019); Otros países como Estados Unidos, Brasil, China entre otros también avanza hacia una reducción significativa de su uso; muy pronto Colombia también tendrá que reducir la utilización de los AGP jalonado por la implementación del Plan Estratégico Nacional de Respuesta a la Resistencia a los Antimicrobianos. La adopción de estas medidas es de vital importancia para la salud pública; sin embargo, afectará el desempeño productivo y la rentabilidad de las explotaciones avícolas. La actividad avícola en Colombia es uno de los renglones de mayor crecimiento en la producción pecuaria, con una participación en el PIB pecuario del 32,5%, con un valor de la producción superior a los $20 billones anuales y la generación más de 350.000 empleos entre formales e informales (Fenavi 2021). Además cabe resaltar que el pollo y el huevo son las principales fuentes de proteína en la alimentación de la población. Para evitar las repercusiones negativas de la adopción de estas nuevas medidas, se han realizado numerosas investigaciones con el fin de buscar nuevos productos o enfoques alternativos a los AGP, y se han desarrollado alternativas a los antibióticos para mantener o mejorar la salud y el rendimiento de las aves de corral. En este contexto, el presente trabajo logra establecer mediante la revisión de literatura, el potencial fitobiótico de los extractos de hojas de cuatro especies de mirtáceas presentes en Colombia, Psidium guajava (guayaba), Eugenia stipitata (arazá), Campomanesia lineatifolia (champa) y EucalyptusEucalyptus spp. (eucalipto), las cuales presentan actividad antimicrobiana, antioxidante, antinflamatoria, antiparasitaria y gastroprotectora; por esta razón se puede considerar que estos extractos son alternativas viables a los AGP utilizados en las dietas de animales de producción, mitigando de esta forma los efectos negativos de la restricción de los mismos. Si bien, se estableció el potencial fitobiótico de estos extractos, es necesario continuar realizando estudios en cuanto a su aplicación industrial, definición de modo de uso, determinación dosis de los extractos o mezclas de diferentes extractos para promover la actividad buscada, formas de conservación y empaque del producto.
dc.languagespa
dc.publisherUniversidad de Bogotá Jorge Tadeo Lozano
dc.publisherFacultad de Ciencias Naturales e Ingeniería
dc.relationAbbas, R. Z., Colwell, D. D. & Gilleard, J. (2012). Botanicals: an alternative approach for the control of avian coccidiosis. World's Poultry Science Journal, 68(2), 203-215. Abreu O. (2005). Artículo de revisión potencial medicinal del género Sapindus L. (Sapindaceae) y de la especie Sapindus saponaria L. Rev Cubana Plant Med 10; 3-4 Abudabos, A., Alyemni, A., Dafalla, Y., & Khan, R. (2018). The effect of phytogenics on growth traits, blood biochemical and intestinal histology in broiler chickens exposed to Clostridium perfringens challenge. Journal of Applied Animal Research, 46(1); 691–695. DOI:10.1080/09712119.2017.1383258 Abdelrahim, S., Almagboul A., Omer, M., Elegami, A. (2002). Antimicrobial activity of Psidium guajava L. Fitoterapia 73, 713–715 Acosta, L., & Mazorra, A. (2005). Enterramientos de masas de yuca del pueblo Ticuna: In la yuca es cosmología y ritual Tikuna. Instituto Amazónico de Investigaciones Científicas, SINCHI Ministerio de Ambiente, Vivienda y Desarrollo Territorial. 1-21 Agronegocios. (2015 de junio de 2015). Agronegocios.co. Obtenido de: www.agronegocios.co/agricultura/laguayaba-se-abre-paso-en-la-industriaAguinaga, E. (2013). Estudio investigativo de la chirimoya, el babaco y el arazá; y su aplicación a la repostería. Universidad tecnológica equinoccial. 181. Ahmad Jan, S. (2018). Antioxidant and anticancer activities of Brassica rapa: a review. MOJ Biology and Medicine. 3(4), 175–178. DOI:10.15406/mojbm.2018.03.00094 Aires, D., Capdevila, N., Segundo, M. (2005). Ácidos grasos esenciales. Ámbito Farmacéutico, 24(4), 97-102 Akin, M., Aktumsek, A., & Nostro, A. (2010). Antibacterial activity and composition of the essential oils of Eucalyptus camaldulensis Dehn. and Myrtus communis L. growing in Northern Cyprus. African Journal of Biotechnology. 9(4), 531–535. DOI:10.4314/ajb.v9i4. Al-Gendy, A. A., Nematallah, K. A., Zaghloul, S. S., & Ayoub, N. A. (2016). Glucosinolates profile, volatile constituents, antimicrobial, and cytotoxic activities of Lobularia libyca. Pharmaceutical Biology, 54(12), 3257– 3263. DOI:10.1080/13880209.2016.1223146 Aland, A. & Madec, F. (2009). Sustainable animal production. In Sustainable animal production 7:29-2. DOI:10.3920/978-90-8686-685-4 Aldoghaim, F., Flematti, G., Hammer, K. (2018). Antimicrobial activity of several cineole-rich western australian eucalyptus essential oils. Microorganisms. 6(4), 122. DOI:10.3390/microorganisms6040122 Álvarez, G., Galvis, J. A., & Balaguera-López, H. E. (2009). Determinación de cambios físicos y químicos durante la maduración de frutos de champa (Campomanesia lineatifolia R. & P.). Agronomía Colombiana, 27(2), 253–259. Alnassan, A. A., Thabet, A., Daugschies, A., & Bangoura, B. (2015). In vitro efficacy of allicin on chicken Eimeria tenella sporozoites. Parasitology research, 114(10), 3913-3915. Alo, M., Eze, U. A., & Anyim, C. (2012). Invitro Antimicrobial Activities of Extracts of Magnifera indica, Carica papaya and Psidium guajava Leaves on Salmonella typhi Isolates. World J Public Health Sciences World Journal of Public Health Sciences. 11(11), 1–6. Araújo, Farias, de P., Neri-Numa, Dias-Audibert, Delafiori, Souza, D., Catharino, Sacramento, D., & Pastore. (2021). Chemical characterization of Eugenia stipitata: A native fruit from the Amazon rich in nutrients and source of bioactive compounds. Food Research International, 139. DOI:10.1016/j.foodres.2020.109904 Araújo, A., Lira, L.,Rhayanny, M., Ferreira M., Souza M., Ribeiro da Silva M, Fernandes M., Coelho G., Guerra, G., Nunes de Melo M (2014). Quantification of polyphenols and evaluation of antimicrobial, analgesic and antiinflammatory activities of aqueous and acetone–water extracts of Libidibia ferrea, Parapiptadenia rigida and Psidium guajava. Journal ofEthnopharmacology. 156, 88–96 Arias, R., & Ferrando, A. (1977). B. La quinina es un viejo fármaco que no cabe relegar al olvido. Anales de Medicina y Cirugía, 57(249), 172-188. Azevedo, M., Silva, D., Bonadeu, F., Silva, D., Passarini, G. M., & Neri, S. (2020). Piplartine and piperine : a review of their biological activities piplartina e piperina : uma revisão de suas atividades biológicas. Technical and Technologica,l 6.2 (2019): 818-858. Bachir, R., & Benali, M. (2012). Antibacterial activity of the essential oils from the leaves of Eucalyptus globulus against Escherichia coli and Staphylococcus aureus. Asian Pacific Journal of Tropical Biomedicine. 2(9), 739– 742. DOI:10.1016/S2221-1691(12)60220-2 Bak, S., Paquette, S., Morant, M., Morant, A., Saito, S., Bjarnholt, N., Zagrobelny, M., Jørgensen, K., Osmani, S., Simonsen, H., Pérez, R. S., Van Heeswijck, T., Jørgensen, B., & Møller, B.(2006). Cyanogenic glycosides: A case study for evolution and application of cytochromes P450. Phytochemistry Reviews. 5(2–3), 309–329. DOI:10.1007/s11101-006-9033-1 Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils A review. In Food and Chemical Toxicology. 46(2), 446–475. DOI:10.1016/j.fct.2007.09.106
dc.relationBalaguera, H., Álvarez, J., & Bonilla, D. (2009). Ciencias agropecuarias y biológicas artículo científico crecimiento y desarrollo del fruto de champa (Rev. U.D.C.A Act. & Div. Cient. 12 (2): 113-123, 2009, 12(2), 113–123. Balaguera López, H. E. (2011). Estudio del crecimiento y desarrollo del fruto de champa (Campomanesia lineatifolia R and P) y determinación del punto óptimo de cosecha. Escuela de Posgrados. Bedford M and Schulze H (1998). Exogenous enzymes for pigs and poultry. Nutrition Research Reviews, 11: 91–114. Bassolé, I. H. N., & Juliani, H. R. (2012). Essential oils in combination and their antimicrobial properties. Molecules, 17(4), 3989–4006. DOI:10.3390/molecules17043989 Bo, C., Bernardi S, Marino, M, Porrini, M, Tucci, M, Guglielmetti S., Cherubini A, Carrieri, A., Kirkup B, Kroon P, Zamora-Ros, R., Hidalgo, N.,Lacueva, C., Riso P (2019). Systematic Review on Polyphenol Intake and Health Outcomes: Is there Sufficient Evidence to Define a Health-Promoting Polyphenol-Rich Dietary Pattern?. Nutrients. 11, 1355. DOI:10.3390/nu1106135 Bozkurt, M., Giannenas, I., Küçükyilmaz, K., Christaki, E., & Florou-Paneri, P. (2013). An update on approaches to controlling coccidia in poultry using botanical extracts. British poultry science, 54(6), 713-727. Brož, J., Žďárská, D. J., Urbanová, J., Brabec, M., Doničová, V., Štěpánová, R., Kvapil, M. (2018). Current level of glycemic control and clinical inertia in subjects using insulin for the treatment of type 1 and type 2 diabetes in the Czech Republic and the Slovak Republic: results of a multinational, multicenter, observational survey (DIAINFORM). Diabetes Therapy, 9(5), 1897-1906 Bolarinwa, I., Olanrewaju, M., Adebisi, S., Ajala, A., (2016). A Review of Cyanogenic Glycosides in Edible Plants. Toxicology - New Aspects to This Scientific Conundrum. 8, 179-181. DOI: 10.5772/64886 Daswani, P., Gholkar, M., Birdi, T., (2017). Psidium guajava: A Single Plant for Multiple Health Problems of Rural Indian Population. Pharmacognosy Reviews. 11(22): 167–174. DOI:10.4103/phrev.phrev_17_17: 10.4103/phrev.phrev_17_17 Bera, I., Tyagi, P., Mir, N. A., Begum, J., Dev, K., Tyagi, P., Biswas, A., Sharma, D., & Mandal, A. (2019). Effect of dietary saponin rich soapnut (Sapindus mukorossi) shell powder on growth performance, immunity, serum biochemistry and gut health of broiler chickens. Journal of Animal Physiology and Animal Nutrition, 103(6), 1800–1809. DOI:10.1111/jpn.13190 Bhandari, S. R., y Kwak, J. H. 2015. Chemical composition and antioxidant activity in different tissues of Brassica vegetables. Molecules, 20, 1228-1243. Birdi, T. J., Daswani, P. G., Brijesh, S., & Tetali, P. (2011). In vitro antigiardial and antirotaviral activity of Psidium guajava L. leaves. Indian Journal of Pharmacology, 43(5), 616–617. DOI:10.4103/0253-7613.84990 Bishop, C. (1995). Antiviral activity of the essential oil of Melaleuca alternifolia (Maiden amp; Betche) cheel (tea tree) against tobacco mosaic virus. Journal of Essential Oil Research. 7(6), 641–644. DOI:10.1080/10412905.1995.9700519 Biswas,B., Rogers,K., McLaughlin, F.,Daniels, D., Yadav A. (2013). Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L.) on Two Gram-Negative and Gram-Positive Bacteria. International Journal of Microbiology. 1-7. DOI: 10.1155/2013/746165 Blažević, I., Đulović, A., Maravić, A., Čikeš Čulić, V., Montaut, S., & Rollin, P. (2019). Antimicrobial and Cytotoxic Activities of Lepidium latifolium L. Hydrodistillate, Extract and Its Major Sulfur Volatile Allyl Isothiocyanate. Chemistry and Biodiversity, 16(4). DOI:10.1002/cbdv.201800661 Blažević, I., Radonić, A., Skočibušić, M., Denicola, G., Montaut, S., Iori, R., Rollin, P., Mastelić, J., Zekić, M., & Maravić, A. (2011). Glucosinolate profiling and antimicrobial screening of aurinia leucadea (Brassicaceae). Chemistry and Biodiversity, 8(12), 2310–2321. DOI:10.1002/cbdv.201100169 Bonilla, A., Duque, C., Garzón, C., Takaishi, Y., Yamaguchi, K., Hara, N., & Fujimoto, Y. (2005). Champanones, yellow pigments from the seeds of champa (Campomanesia lineatifolia). Phytochemistry, 66(14), 1736–1740. DOI:10.1016/j.phytochem.2005.05.025 Boom, E., Orozco, J. A., Alean, J. D., & Rojano, B. (2018). Evaluation of antioxidant activity of eucalyptus essential oils grown in Colombia. Información Tecnológica. 29(6), 57–66. DOI:10.4067/S0718-07642018000600057 Borges A., Abreu A., Ferreire C., Saavedra M., S. L. y S. M. (2015). 429. Glicosinolatos.pdf (pp. 4737–4748). Boscaro, V., Boffa, L., Binello, A., Amisano, G., Fornasero, S., Cravotto, G., & Gallicchio, M. (2018). Antiproliferative, proapoptotic, antioxidant and antimicrobial effects of Sinapis nigra L. And Sinapis alba L. Extracts. Molecules, 23(11). DOI:10.3390/molecules23113004 Boulekbache-Makhlouf, L., Slimani, S., & Madani, K. (2013). Total phenolic content, antioxidant and antibacterial activities of fruits of Eucalyptus globulus cultivated in Algeria. Industrial Crops and Products. 41(1), 85–89. DOI:10.1016/j.indcrop.2012.04.019 Brenes, A., & Roura, E. (2010). Essential oils in poultry nutrition: Main effects and modes of action. Animal Feed Science and Technology. 158(1–2), 1–14. DOI:10.1016/j.anifeedsci.2010.03.007 Briskin, D. P. (2000). Medicinal plants and phytomedicines. Linking plant biochemistry and physiology to human health. Plant Physiology, 124(2), 507–514. DOI:10.1104/pp.124.2.507 Bruneton, J. (2001). Farmacognosia, fitoquímica, plantas medicinales. Zaragoza: 1099 p. Edición: 2a ed. Buitrago, J. (2013). Estudio de la diversidad genética en Eucalyptus globulus (Labill.) empleando marcadores moleculares tipo microsatélite (SSR). Tesis de grado Magister en Ciencias Agrarias Énfasis Genética y Fitomejoramiento. Universidad Nacional de Colombia. 60 pp Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods - A review.
dc.relationCala, G., & Alarcón, F. (2006). Plan de negocios exportador de mermelada de arazá al mercado holandes. Universidad De La Salle. 1, 170. Calvo, J., & Martínez-Martínez, L. (2009). Mecanismos de acción de los antimicrobianos. Enfermedades Infecciosas y Microbiologia Clínica. 27(1), 44–52. DOI:10.1016/j.eimc.2008.11.001 Cani, P. D., & Everard, A. (2016). Talking microbes: When gut bacteria interact with diet and host organs. Molecular Nutrition and Food Research. 60(1), 58–66. DOI:10.1002/mnfr.201500406 Capeletto, C., Conterato, G., Scapinello, J., Rodrígues, F., Copini, M., Kuhn, F., Tres, M., Dal Magro, J., & Oliveira, J. (2016). Chemical composition, antioxidant and antimicrobial activity of guavirova (Campomanesia xanthocarpa Berg) seed extracts obtained by supercritical CO2 and compressed n-butane. Journal of Supercritical Fluids. 110, 32–38. DOI:10.1016/j.supflu.2015.12.009 Cárdenas-López, D., B. M. P. y C. N. (Eds). (2017).Plantas exóticas con alto potencial de invasión en Colombia.Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt. Programa de Ciencias de la Biodiversidad. 295 p. Cardoso, C., Salmazzo, G., Honda, N. K., Batista, C., do Carmo Vieira, M., & Gómes, R. (2010). Antimicrobial activity of the extracts and fractions of hexanic fruits of Campomanesia Species (Myrtaceae). 13(5), 1273–1276. Carson, C. F., Hammer, K. A., & Riley, T. V. (2006). Melaleuca alternifolia (tea tree) oil: A review of antimicrobial and other medicinal properties. Clinical Microbiology Reviews. 19(1), 50–62. DOI:10.1128/CMR.19.1.50- 62.2006 Ceballos, F., Castillo, Y., De La Rosa, F., Vásquezc, W., Reyes, S., Cuello, A., Cuesta, A, Esteban, M.(2020) Bactericidal effect on skin mucosa of dietary guava (Psidium guajava L.) leaves in hybrid tilapia (Oreochromis niloticus × O. mossambicus). Journal of Ethnopharmacology. 259 (2020) 112838 Ceide, M. F. (2017). Diseño de un nuevo producto: té de hojas de guanábana, a través del estudio de la evidencia científica que justifica el desarrollo de un producto de estas características en el mercado ecuatoriano (Trabajo de Grado Programa Universidad Diseño Industrial Universidad San Francisco de Quito). Cepero Briz R. 2005. Retirada de los antibióticos promotores de crecimiento en la unión europea: causas y consecuencias. En XII Congreso Bienal Asociación Mexicana de Nutrición Animal (AMENA) Puerto Vallarta, Jalisco.46 p. Chahomchuen, T., Insuan, O., & Insuan, W. (2020). Chemical profile of leaf essential oils from four Eucalyptus species from Thailand and their biological activities. Microchemical Journal. 158, 105-248. DOI:10.1016/j.microc.2020.105248 Chakraborty, S., Afaq, N., Singh, N., & Majumdar, S. (2018). Antimicrobial activity of Cannabis sativa, Thuja orientalis and Psidium guajava leaf extracts against methicillin-resistant Staphylococcus aureus. Journal of Integrative Medicine. 16(5), 350–357. DOI:org/10.1016/j.joim.2018.07.005 Chanu, R., Pai, V., Chakraborty, R., Raju, B., Lobo, R., Ballal, M. (2011) Screening for antidiarrheal activity of Psidium guajava : A possible alternative in the treatment against diarrhea causing enteric pathogen. J. Chem. Pharm. Res. 3(6):961-967. Chao, S. C., Young, D. G., & Oberg, C. J. (2000). Screening for inhibitory activity of essential oils on selected bacteria, fungi and viruses. Journal of Essential Oil Research. 12(5), 639–649. DOI: 10.1080/10412905.2000.9712177 Charles, O. E., Anthony, A. A., Kwaliafon, S. M., Nneka, N. I., & Kennedy, F. C. (2012). Antimicrobial activity of Psidium guajava Linn. stem extracts against methicillin-resistant Staphylococcus aureus. African Journal of Biotechnology. 11(89), 15556–15559. DOI:10.5897/ajb12.1284 Chasipanta, E., & Chicaiza, T. (2016). Evaluación de la actividad antioxidante bioautográfica de 5 variedades de aceites esenciales amazónicos (Ocotea quixos; Psidium guajava; Eugenia stipitata; Piper auritum; Piper imperiale ). Tesis de Grado del Programa de Ingenieria en Biotecnología de los Recusrsos Naturales. Universidad Politécnica Salesiana Sede Quito.80 p. Chaudhary, S. K., Rokade, J. J., N. Aderao, G., Singh, A., Gopi, M., Mishra, A., & Raje, K. (2018). Saponin in Poultry and Monogastric Animals: A Review. International Journal of Current Microbiology and Applied Sciences 7(07), 3218–3225. DOI:10.20546/ijcmas.2018.707.375 Chauhan, A. K., Singh, S., & Singh, R. P. (2015). Guava-enriched dairy products : a review. Indian J. Dairy Sci. 68(1), 1–5. Chen, L., Tai, W. C. S., & Hsiao, W. L. W. (2015). Dietary saponins from four popular herbal tea exert prebiotic-like effects on gut microbiota in C57BL/6 mice. Journal of Functional Foods, 17(August), 892–902. DOI:10.1016/j.jff.2015.06.050 Cho, K. S., Lim, Y., Lee, K., Lee, J., Lee, J. H., & Lee, I.-S. (2017). Terpenes from forests and human health. Toxicological Research. 33(2), 97–106. DOI:10.5487/tr.2017.33.2.97 Choct, M., Hughes, R. J., Wang, J., Bedford, M. R., Morgan, A. J., & Annison, G. (1996). Increased small intestinal fermentation is partly responsible for the anti-nutritive activity of non-starch polysaccharides in chickens. British Poultry Science. 37(3), 609–621. DOI:10.1080/00071669608417891 Cock I. (2011). Medicinal and Aromatic Plantas-Australia. EOLSS. 174 pp. Cook M (2004). Antibodies: alternatives to antibiotics in improving growth and feed efficiency. Journal of Applied Poultry Research 13: 106–119. Cortes, D., Moreno, L., Párraga, J., Galán, A., & Cabedo, N. (2014). Nuevos fármacos inspirados en Annonáceas.
dc.relationChristaki, E., Bonos, E., Giannenas, I., & Florou-Paneri, P. (2012). Aromatic plants as a source of bioactive compounds. Agriculture (Switzerland), 2(3), 228–243. DOI:10.3390/agriculture2030228 Clavijo-Romero, A., Quintanilla-Carvajal, M. X., & Ruiz, Y. (2019). Stability and antimicrobial activity of eucalyptus essential oil emulsions. Food Science and Technology International. 25(1), 24–37. DOI:10.1177/1082013218794841 Chaturvedi, t., Singh, S., Nishad, I., Kumar, A., Tiwari, N., Tandon, S., Saikia, D Swaroop S. (2019). Chemical composition and antimicrobial activity of the essential oil of senescent leaves of guava (Psidium guajava L.). Natural Product Research.1-4. DOI: 10.1080/14786419.2019.1648462 Church, D.,Pond W & Pond K. ( 2002). Fundamentos de nutrición y alimentación de animales. Ed. Limusa. 635p. Clarke P. 2008. Aboriginal healing practices and Australian bush medicine. Journal of the Anthropological Society of South Australia, 33: 3-39. Contreras, R. (2007). El origen del color en la naturaleza : una introducción a la química del color. Publicaciones Vicerectorado Academico Universidad de los Andes. Codepre. 62 Coppen, J. J. W. (2002). Eucalyptus : the genus Eucalyptus. Taylor & Francis. 433 pp. Correa, E., Quiñones, W., Robledo, S., Carrillo, L., Archbold, R., Torres, F., Escobar, G., Herrera, N., & Echeverri, F. (2014). Leishmanicidal and trypanocidal activity of Sapindus saponaria. Boletín Latinoamericano y Del Caribe de Plantas Medicinales y Aromáticas. 13(4), 311–323. Cortes, D., Moreno, L., Párraga, J., Galán, A., & Cabedo, N. (2014). Nuevos fármacos inspirados en annonáceas. Revista Brasileira de Fruticultura, 36(Spec. Edition 1), 22–31. DOI:10.1590/S0100-29452014000500003 Coutinho, I. D., Cardoso, C. A. L., Ré-Poppi, N., Melo, A. M., Vieira, M. D. C., Honda, N. K., & Coelho, R. G. (2009). Gas Chromatography-Mass Spectrometry (GC-MS) and evaluation of antioxidant and antimicrobial activities of essential oil of Campomanesia adamantium (Cambess.) O. Berg (Guavira). Brasilian Journal of Pharmaceutical Sciences. 45(4), 767–776. DOI:10.1590/S1984-82502009000400022 Cruz, E., & Marín, J. (2015). Aceites esenciales como antioxidantes y antimicrobianos naturales. In Alimentos Funcionales y Compuestos Bioactivos. 6:25-33 Cuéllar, E.., & Jiménez, C. (2013). Caracterización física y química del fruto de arazá (Eugenia stipitata Mc Vaugh). Universidad de La Amazonia. 6(2), 116–123. Cuellar, F. A., Ariza, E., Anzola, C., & Restrepo, P. (2013). Research of antioxidant capacity of araza (Eugenia stipitata Mc Vaugh) during the ripening. Revista Colombiana de Química, 42(2), 21-28. D’Alacant. (2019) Sinergismo farmacológico entre extractos vegetales y cloxacilina frente a Staphylococcus aureus resistente a meticilina. Tesis de Grado en el Programa de Farmacia. Universitas San Miguel. 76p del Cacho, E., Gallego, M., Francesch, M., Quílez, J., & Sánchez-Acedo, C. (2010). Effect of artemisinin on oocyst wall formation and sporulation during Eimeria tenella infection. Parasitology International, 59(4), 506-511. De Souza, A. , De Oliveira, C. , De Oliveira, V., Betim, F., Miguel, O. Miguel, M. (2018). Traditional uses, phytochemistry, and antimicrobial activities of eugenia species - A review. Planta Médica. 84(17), 1232–1248. DOI:10.1055/a-0656-7262 Dataifix. (19 de febreo de 2021). Dataifx.com. Dewick, P. M. (2003). The Mevalonate and Deoxyxylulose Phosphate Pathways: Terpenoids and Steroids. In Medicinal Natural Products. DOI:0.1002/0470846275.ch5 Di Meo, F., Margarucci, S., Galderisi, U., Crispi, S., & Peluso, G. (2019). Curcumin, gut microbiota, and neuroprotection. Nutrients.11(10), 2426. Díaz, R., & Hernández,S. (2020). Theobromas de la Amazonia Colombiana: una alternativa saludable. Información Tecnológica, 31(2), 3–10. Dibner, J., & Buttin, P. (2002). Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. Journal of Applied Poultry Research.11(4), 453–463. DOI:10.1093/japr/11.4.453 Dibner, J., & Richards, J. (2005). Antibiotic growth promoters in agriculture: History and mode of action. Poultry Science.84(4), 634–643. DOI:10.1093/ps/84.4.634 Diniz, R., Coimbra, J. Martins, M., Dos Santos, M., Diniz, M., De Souza Santos, E., Santánna, D., Da Rocha, R., De Oliveira, E. (2014). Physical properties of red guava (Psidium guajava L.) Pulp as affected by soluble solids content and temperature. International Journal of Food Engineering. 10(3), 437–445. DOI:10.1515/ijfe-2012- 0250 Dorman, H. J. D., & Deans, S. G. (2000). Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. Journal of Applied Microbiology. 88(2), 308–316. DOI:10.1046/j.1365-2672.2000.00969.x Drew, M. D., Syed, N. A., Goldade, B. G., Laarveld, B., & Van Kessel, A. G. (2004). Effects of dietary protein source and level on intestinal populations of Clostridium perfringens in broiler chickens. Poultry Science. 83(3), 414– 420. DOI:10.1093/ps/83.3.414 Dubey S (2016) Comparative antimicrobial efficacy of herbal alternatives (Emblica officinalis, Psidium guajava), MTAD, and 2.5% sodium hypochlorite against Enterococcus faecalis: An in vitro study. Journal of oral biology and craniofacial research. 1-4 Dufour, V., Alazzam, B., Ermel, G., Thepaut, M., Rossero, A., Tresse, O., & Baysse, C. (2012). Antimicrobial activities of isothiocyanates against Campylobacter jejuni isolates. Frontiers in Cellular and Infection Microbiology. 2, 53. DOI:10.3389/fcimb.2012.00053
dc.relationDutra, R., Campos, M., Santos, A., Calixto, J. (2016). Medicinal plants in Brasil: Pharmacological studies, drug discovery, challenges and perspectives. In Pharmacological Research. 112(4–29). Academic Press. DOI:10.1016/j.phrs.2016.01.021 Elaissi, A., Mabrouk, S., Salem, Ben, B., Rouis, Z., Chemli, R., Farhat, F., Khouja, M., Harzallah-Skhiri, F., Aouni, M., Salah, K. B. H., Salem, Y. (2012). Chemical composition of 8 eucalyptus species’ essential oils and the evaluation of their antibacterial, antifungal and antiviral activities. BMC Complementary and Alternative Medicine, 12, 15. Edqvist, L. E., & Pedersen, K. B. (2001). Antimicrobials as growth promoters: resistance to common sense. Late lessons from early warnings: the precautionary principle. 1896–2000. FAO. (2006). El eucalipto en la repoblación forestal. In Colección FAO. 723 p. Fajardo, A. & Morales A (2011). Composition of arazá (Eugenia stipitata McVaugh) seed essential oil. Momentos de Ciencia. 8 (2), 126-130 Fenavi, (2018). Producción Avícola 2005-2008. Boletín Fenaviquin. 277, 14. Fenavi, (2019). Gasto de las familias: huevo y pollo. Boletín Fenaviquin. 278, 15. Fenavi. (2018). Consumidores : expectativas. 277, 14. Fenavi. (2021). Las huellas de la infracción. Avicultores, 282, 1–28. DOI:10.2307/j.ctt21pxk13.8 Fernandes, M., Dias, A., Carvalho, R., Souza, C., Oliveira W. (2014). Antioxidant and antimicrobial activities of Psidium guajava L. spray dried extracts. Industrial Crops and Products. 60 (2014) 39–44 Fraga, C., Oteiza, P., Galleano, M. (2018). Plant bioactives and redox signaling: (–)-Epicatechin as a paradigm. Molecular Aspects of Medicine. 61, 31–40. DOI:10.1016/j.mam.2018.01.007 Franco, M. R. B., & Shibamoto, T. (2000). Volatile composition of some Brasilian fruits: Umbu-caja (Spondias citherea), camu-camu (Myrciaria dubia), araca-boi (Eugenia stipitata), and cupuacu (Theobroma grandiflorum). Journal of Agricultural and Food Chemistry. 48(4), 1263–1265. DOI:10.1021/jf9900074 Fuentes, J. C., Castro, V., Jakupovic, J., & Murillo, R. (2004). Diterpenos y otros constituyentes de Croton hirtus (Euphorbiaceae). Revista de biología tropical, 52(1), 269-285. Furuse, M. (1999). Release and endogenous actions of the gastrin/cholecystokinin (CCK) family in the chicken. Journal of Experimental Zoology. 283(4–5), 448–454. Gabriel, I., Lessire, M., Mallet, S., & Guillot, J. F. (2006). Microflora of the digestive tract: Critical factors and consequences for poultry. World’s Poultry Science Journal, 62(3), 499–511. DOI:org/10.1079/WPS2006111 Gadde, U., Kim, W., Oh, S., Lillehoj, H.(2017). Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: A review. Animal Health Research Reviews. 18(1), 26–45. DOI:10.1017/S1466252316000207 García & Perez. (2009). Metabolismo secundario de plantas. Reduca (Biología). Serie Fisiología Vegetal, 2(3), 119– 145 pp. Garzón, G., Narváez-Cuenca, C., Kopec, R., Barry, A., Riedl, K., Schwartz, S. (2012). Determination of carotenoids, total phenolic content, and antioxidant activity of Arazá (Eugenia stipitata McVaugh), an amazonian fruit. Journal of Agricultural and Food Chemistry. 60(18), 4709–4717. DOI:10.1021/jf205347f Gaviria, M., Posada, S., Mira, J. (2018). Acetogenins, alternative cancer treatment in dogs. Revista CES Medicina Veterinaria y Zootecnia. 13(2), 157–172. Gershenzon, J., McConkey, M. E., Croteau, R. B. (2000). Regulation of monoterpene accumulation in leaves of Peppermint. Plant Physiology. 122(1), 205–213. DOI:10.1104/pp.122.1.205 Gertsch J. 2009. How scientific is the science in ethnopharmacology? Historical perspectives and epistemological problems. Journal of Ethnopharmacology, 122: 177–183. doi:10.1016/j.jep.2009.01.010 Ghisalberti, E. L. (1996). Bioactive acylphloroglucinol derivatives from Eucalyptus species. Phytochemistry, 41(1), 7–22. DOI:org/10.1016/0031-9422(95)00484-X Giannenas, I., Bonos, E., Skoufos, I., Tzora, A., Stylianaki, I., Lazari, D., Tsinas, A., Christaki, E., Florou-Paneri, P. (2018). Effect of herbal feed additives on performance parameters, intestinal microbiota, intestinal morphology and meat lipid oxidation of broiler chickens. In British Poultry Science. 59 (5). DOI:10.1080/00071668.2018.1483577 Goldbeck, J., do Nascimento, J., Jacob, R., Fiorentini, Â., da Silva, W.(2014). Bioactivity of essential oils from Eucalyptus globulus and Eucalyptus urograndis against planktonic cells and biofilms of Streptococcus mutans. Industrial Crops and Products. 60, 304–309. DOI: 10.1016/j.indcrop.2014.05.030 Gómez, Jiang, Zhang, Yan, Villegas, & Applegate. (2021). Advances in Poultry Nutrition Research Immune. IntechOpen. 137–144. Gong, J., Si, W., Forster, R., Huang, R., Yu, H., Yin, Y., Yang, C.,Han, Y. (2007). 16S rRNA gene-based analysis of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts: From crops to ceca. FEMS Microbiology Ecology. 59(1), 147–157. DOI:10.1111/j.1574-6941.2006.00193.x González-Esquinca, A., Schlie-Guzmán, M., Luna-Cazáres, L. (2009). Las Acetogeninas De Annonaceae: efecto antiproliferativo en líneas celulares neoplásicas. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 8(4), 245-257. Goodger, J., & Woodrow, I. (2008). Selection gains for essential oil traits using micropropagation of Eucalyptus polybractea. Forest Ecology and Management. 255(10), 3652–3658. DOI:10.1016/j.foreco.2008.03.006 Granados, C., Santafé, G., Acevedo, D. (2015). Composición química y evaluación de la actividad antioxidante del aceite esencial foliar de Eucalyptus camaldulensis de Norte de Santander (Colombia). Revista U.D.C.A
dc.relationGranados, D. (2007). Ecología del género Eucalyptus. 13(2), 143–156. Grashorn, M. (2010). Use of phytobiotics in broiler nutrition - An alternative to infeed antibiotics? Journal of Animal and Feed Sciences. 19(3), 338–347. DOI:10.22358/jafs/66297/2010 Guzman, J. (2014). Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. In Molecules 19, 19292-19349. DOI:10.3390/molecules191219292 Harborne, J. (1993). Introduction to Ecological Biochemistry. Academic Press: London. 384 pp Harborne, J. (2001). Twenty-five years of chemical ecology. Nat. Prod. Rep., 18: 361-379 Hernandez-Rodas, M., Morales, J., Valenzuela R., Morales G., Valenzuela A. (2016). Benefits of n-3 long-chain polyunsaturated fatty acids in non-alcoholic fatty liver disease. Revista Chilena de Nutrición 43 (2), 196-205. Hernández, F., Madrid, J., García, V., Orengo, J., Megías, M. D. (2004). Influence of two plant extracts on broilers performance, digestibility, and digestive organ size. Poultry Science. 83(2), 169–174. DOI:10.1093/ps/83.2.169 Hong, Y., Song, W., Lee, S., Lillehoj, H. (2012). Differential gene expression profiles of β-defensins in the crop, intestine, and spleen using a necrotic enteritis model in 2 commercial broiler chicken lines. Poultry Science. 91(5), 1081–1088. DOI:10.3382/ps.2011-01948 Hwang, Y. (1989). Tannins as Antiviral Agents. IntechOpen 1-13 Huff, W. E., Huff, G. R., Rath, N. C., Balog, J. M., & Donoghue, A. M. (2004). Therapeutic efficacy of bacteriophage and Baytril (enrofloxacin) individually and in combination to treat colibacillosis in broilers. Poultry science, 83(12), 1944-1947. Ifeanyichukwu, I., Chika, E., Emmanuel, N., Anthonia, O., Ngozi, A., & Agabus, N. (2015). Preliminary Investigation of the Antibacterial Activity of Psidium guajava Extracts. European Journal of Medicinal Plants. 7(1), 26–30. https://doi.org/10.9734/ejmp/2015/14307 Instituto Colombiano Agropecuario - ICA. (1981). Por la cula se adoptan las disposiciones para la utilización y comercialización de productos antimicrobianos de uso veterinario. 14pp Isemura, M. (2019). Catechin in human health and disease. Molecules, 24(3). DOI:10.3390/molecules24030528 Jang, S. I., Jun, M. H., Lillehoj, H. S., Dalloul, R. A., Kong, I. K., Kim, S., & Min, W. (2007). Anticoccidial effect of green tea-based diets against Eimeria maxima. Veterinary Parasitology, 144(1-2), 172-175. Jonathan G, McConkey M, Croteau R (2000) Regulation of Monoterpene Accumulation in Leaves of Peppermint. Plant Physiology. 122, 205–213 Jordán, M. J., Lax, V., Rota, M. C., Lorán, S., Sotomayor, J. A. (2012). Relevance of carnosic acid, carnosol, and rosmarinic acid concentrations in the in vitro antioxidant and antimicrobial activities of Rosmarinus officinalis (L.) methanolic extracts. Journal of Agricultural and Food Chemistry. 60(38), 9603–9608. DOI:10.1021/jf302881t Juergens, U., Stöber, M., Vetter, H. (1998). Inhibition of cytokine production and arachidonic acid metabolism by Eucalyptus (1.8-cineole) in human blood monocytes in vitro (pp. 1–10). European Journal of Medical Research. 3, 508–510. Kahkeshani, N., Farzaei, F., Fotouhi, M., Alavi, S., Bahramsoltani, R., Naseri, R., Momtaz, S., Abbasabadi, Z., Rahimi, R., Farzaei, M.,Bishayee, A. (2019). Pharmacological effects of gallic acid in health and disease: A mechanistic review. Iranian Journal of Basic Medical Sciences. 22(3), 225–237. DOI:10.22038/ijbms.2019.32806.7897 Karadas, F., Pirgozliev, V., Rose S., Dimitrov, D., Oduguwa, O., Bravo D. (2014). Dietary essential oils improve the hepatic antioxidative status of broiler chickens. British Poultry Science 55: 329–334. Karásková K, Suchý P., Straková E. (2015). Current use of phytogenic feed additives in animal nutrition: a review. Czech J. Anim. Sci., 60, 2015 (12): 521–530. Knarreborg, A., Simon, M. A., Engberg, R. M., Jensen, B. B., Tannock, G. W. (2002). Effects of dietary fat source and subtherapeutic levels of antibiotic on the bacterial community in the ileum of broiler chickens at various ages. Applied and Environmental Microbiology. 68(12), 5918–5924. DOI:10.1128/AEM.68.12.5918-5924.2002 Koczulla, A. & Bals, R. (2003). Antimicrobial peptides: status and therapeutic potential. Drugs 63: 389–406 Koleckar, V., Kubikova, K., Rehakova, Z., Kuca, K., Jun, D., Jahodar, L., Opletal, L. (2008). Condensed and Hydrolysable Tannins as Antioxidants Influencing the Health. Mini-Reviews in Medicinal Chemistry. 8(5), 436– 447. DOI:10.2174/138955708784223486 Koutsos, E., & Arias, V. (2006). Intestinal ecology: Interactions among the gastrointestinal tract, nutrition, and the microflora. Journal of Applied Poultry Research. 15(1), 161–173.DOI:10.1093/japr/15.1.161 Kuhn, D., Ziem, R., Scheibel, T., Buhl, B., Vettorello, G., Pacheco, L. A., Heidrich, D., Kauffmann, C., de Freitas, E. M., Ethur, E. M., Hoehne, L. (2019). Antibiofilm activity of the essential oil of Campomanesia aurea O. Berg against microorganisms causing food borne diseases. 108, 247–252. DOI:10.1016/j.lwt.2019.03.079 Kumar, A., Singh S, Singh R, Singh S. (2015). Guava-enriched dairy products: a review. Indian J. Dairy Sci. 68(1),1-5 Kumar A, Islam N, Faruk O, Ashaduzzaman M, Dungani R, Rosamah E, Hartati S, Rumidatul A. (1989). Hardwood Tannin: Sources, Utilizations, and Prospects. IntechOpen. 1-18. Kuspradini, H., Putri, A. S., Sukaton, E., Mitsunaga, T. (2016). Bioactivity of Essential Oils from Leaves of Dryobalanops lanceolata, Cinnamomum burmannii, Cananga odorata, and Scorodocarpus borneensis. Agriculture and Agricultural Science Procedia. 9, 411–418. DOI:10.1016/j.aaspro.2016.02.157 Lan, P., Hayashi, H., Sakamoto, M., Benno, Y. (2002). Phylogenetic analysis of cecal microbiota in chicken by the use of 16S rDNA clone libraries. Microbiology and Immunology. 46(6), 371–382. DOI:10.1111/j.1348-
dc.relationLeal, L.., Silva, A., Viana, G. (2017). Justicia pectoralis, a coumarin medicinal plant have potential for the development of antiasthmatic drugs? Revista Brasileira de Farmacognosia. 27(6), 794–802. DOI:10.1016/j.bjp.2017.09.005 Lee, Y.., Cho, H., Ponnuraj, S., Kim, J., Kim, J. S., Kim, S., Park, J. (2011). Phenethyl isothiocyanate inhibits 12-Otetradecanoylphorbol-13-acetate- induced inflammatory responses in mouse skin. Journal of Medicinal Food. 14(4), 377–385. DOI:10.1089/jmf.2010.1296 Lei, F., Yin, Y., Wang, Y., Deng, B., Yu, H. D., Li, L., Xiang, C., Wang, S., Zhu, B., Wang, X. (2012). Higher-level production of volatile fatty acids in vitro by chicken gut microbiotas than by human gut microbiotas as determined by functional analyses. Applied and Environmental Microbiology. 78(16), 5763–5772. DOI:10.1128/AEM.00327-12 Lesschaeve, I., & Noble, A. C. (2005). Polyphenols: factors influencing their sensory properties and their effects on food and beverage preferences. The American Journal of Clinical Nutrition. 81(1 Suppl). DOI:10.1093/ajcn/81.1.330s Li, R., Morris-Natschke, S. L., Lee, K. H. (2016). Clerodane diterpenes: Sources, structures, and biological activities. Natural Product Report. 33(10), 1166–1226. DOI:10.1039/c5np00137d Li, Y., Fu, X., Ma, X., Geng, S., Jiang, X., Huang, Q., Hu, C., Han, X. (2018). Intestinal microbiome-metabolome responses to essential oils in piglets. Frontiers in Microbiology. 9, 1–13. DOI:10.3389/fmicb.2018.01988 Li, Y., Xiang, Q., Zhang, Q., Huang, Y., Su, Z. (2012). Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides. 37: 207–215 Lu, J., Mao, D., Li, X., Ma, Y., Luan, Y., Cao, Y., Luan, Y. (2020). Changes of intestinal microflora diversity in diarrhea model of KM mice and effects of Psidium guajava L. as the treatment agent for diarrhea. Journal of Infection and Public Health, 13(1), 16–26. DOI:10.1016/j.jiph.2019.04.015 Luís, Â., Neiva, D. M., Pereira, H., Gominho, J., Domingues, F., & Duarte, A. P. (2016). Bioassay-guided fractionation, GC–MS identification and in vitro evaluation of antioxidant and antimicrobial activities of bioactive compounds from Eucalyptus globulus stump wood methanolic extract. Industrial Crops and Products. 91, 97–103. DOI:10.1016/j.indcrop.2016.06.022 Lunt, G. G. (1976). Fisiologia vegetal. Biochemical Education. 4(3), 59–60. DOI: 10.1016/0307-4412(76)90121-7 Lyu, Y., Wu, L., Wang, F., Shen, X., Lin, D. (2018). Carotenoid supplementation and retinoic acid in immunoglobulin A regulation of the gut microbiota dysbiosis. Experimental Biology and Medicine. 243(7), 613–620. DOI:10.1177/1535370218763760 Machado, A. , Santos, A. , Martins, G., Cruz, R., Costa, M. do S., Campina, F. , Freitas, M., Bezerra, C. , Leal, A., Carneiro, J., Coronel, C., Rolón, M., Gómez, C., Coutinho, H., Morais-Braga, M. (2018). Antiparasitic effect of the Psidium guajava L. (guava) and Psidium brownianum MART. EX DC. (araçá-de-veado) extracts. Food and Chemical Toxicology. 119, 275–280. DOI:10.1016/j.fct.2018.03.018 Madalosso, R., Oliveira, C., Martins, M., Vieira, A., Barbosa, J., Caliari, M., Castilho, R., Tagliati, C. (2012). Campomanesia lineatifolia Ruíz & Pav. as a gastroprotective agent. Journal of Ethnopharmacology. 139(3), 772–779. DOI:10.1016/j.jep.2011.12.014 Mailoa, N., Mahendradatta, M., Laga, A., Djide, N. (2014). Antimicrobial activities of tannins extract from guava leaves (Psidium Guajava L) on pathogens microbial. International Journal of Scientific & Technology Research. 3 (1), 236-241 Malabed, R., Noel, M., Aton III, B., Toribio, E. (2014). Characterization of the Glucosinolates and Isothiocyanates in Mustard ( Brassica juncea L .) Extracts and Determination of Its Myrosinase Activity and Antioxidant Capacity. DLSU Research Congress. 2014:1–7. Mapatac, L. (2018). Potency of medicinal leaves in the growth performance of broiler chicks. Recoletos Multidisciplinary Research Journal. 197-206. Maria Cardinal, K., Kipper, M., Andretta, I., Machado L. (2019). Withdrawal of antibiotic growth promoters from broiler diets: performance indexes and economic impact. Poultry Science. 98(12), 6659–6667. DOI:10.3382/ps/pez536 Martin, D& Bolling B. (2015). A review of the efficacy of dietary polynenols in experimentela models of inflamatory bowel diseases. Food & Funtion. 6, 1773-1786. Martínez A. (2020). Química de Productos Naturales.Universidad de Antioquía.Facultad de Ciencia Farmaceuticas y Alimentarias. 407 pp. Mashayekhi, H., Mazhari, M., Esmaeilipour, O. (2018). Eucalyptus leaves powder, antibiotic and probiotic addition to broiler diets: Effect on growth performance, immune response, blood components and carcass traits. Animalsl. 12(10), 2049–2055. DOI:10.1017/S1751731117003731 Mathlouthi, N., Mallet, S., Saulnier, L., Quemener, B., Larbier, M. (2011). Technical note : design of a large variable temperature chamber for heat stress studies in rabbits Rabbit meat production has traditionally been typical of Mediterranean countries located in. 51(June), 395–406. DOI:org/10.1051/animres Medeiros, J. R., Medeiros, N., Medeiros, H., Davin, L. B., Lewis, N. G. (2003). Composition of the bioactive essential oils from the leaves of Eugenia stipitata mcvaugh ssp. sororia from the azores. Journal of Essential Oil Research, 15(4), 293–295. DOI:org/10.1080/10412905.2003.9712145 Meléndez-Gómez, C., & Kouznetsov, V. (2005). Alcaloides quinolínicos: importancia biológica y esfuerzos sintéticos.
dc.relationMeléndez, A. &. Vicario, I. (2004). Importancia nutricional de los pigmentos carotenoides. Archivos Latinoamericanos de Nutrición, 54(2), 149–155. Melo, C., Cornejal, N., Cruz, V., Alsaidi, S., Cruz, G., Gomez A., Sorel, V., Bonnaire, T., Zydowsky, T., Priano, C., Fernández, J., Koroch, A. (2020). Antioxidant Capacity and Antimicrobial Activity of Commercial Samples of Guava Leaves (Psidium guajava). Journal of Medicinally Active Plants. 9(1), 2. DOI:10.7275/zzfy-zk15 Minsalud. (2018). Plan nacional contra la resistencia a los antimicrobianos. Ministerio de Salud, 43 pp. Miller R, Skinner E, Sulakvelidze A, Mathis F, Hofacre C. (2010). Bacteriophage therapy for control of necrotic enteritis of broiler chickens experimentally infected with Clostridium perfringens. Avian Diseases 54: 33–40. Molan, A. L., Liu, Z., & De, S. (2009). Effect of pine bark (Pinus radiata) extracts on sporulation of coccidian oocysts. Folia Parasitologica (Prague), 56(1), 1. Abd El-Hack, M., Alagawany, M., Shaheen, H., Samak, D., Othman S., Allam, A., Taha. A., Khafaga, A., Arif, M., Osman, A., Sheikh A. (2020).Ginger and Its Derivatives as Promising Alternatives to Antibiotics in Poultry Feed. Animals. 10 (452), 1-16. Mahmoud, S., Koriem K, Saleh H (2019). Antidiarrheal and protein conservative activities of Psidium guajava in diarrheal rats. Journal of Integrative Medicine. 17, 57–65. DOI:10.1016/j.joim.2018.12.001 Mohamed, E., El-Hack, A., Alagawany, M., Shaheen, H., Samak, D., Othman, S., Sitohy, M. (2020). Ginger and its derivatives as promising alternatives to antibiotics in poultry feed. Animals. 10(3), 452. Mohebodini, H., Jazi, V., Ashayerizadeh, A., Toghyani, M.,Tellez, I.(2021). Productive parameters, cecal microflora, nutrient digestibility, antioxidant status, and thigh muscle fatty acid profile in broiler chickens fed with Eucalyptus globulus essential oil. Poultry Science, 100(3), 100922. DOI:10.1016/j.psj.2020.12.020 Mohiti-Asli, M., & Ghanaatparast-Rashti, M. (2017). Comparison of the effect of two phytogenic compounds on growth performance and immune response of broilers. Journal of Applied Animal Research, 45(1), 603–608. DOI:10.1080/09712119.2016.1243119 Montagne, L., Piel, C., Lallès, J. P. (2004). Effect of Diet on Mucin Kinetics and Composition: Nutrition and Health Implications. Nutrition Reviews, 62(3), 105–114. DOI:10.1301/nr.2004.mar.105-114 Moraes, M., Ribeiro, A., Santin, E., Klasing, K. (2016). Effects of conjugated linoleic acid and lutein on the growth performance and immune response of broiler chickens. Poultry Science, 95(2), 237–246. DOI:10.3382/ps/pev325 Morais-Braga, M., Carneiro, J.., Machado, A., Sales, D., dos Santos, A, Boligon, A., Athayde, M., Menezes, I., Souza, D. ., Costa, J., Coutinho, H. (2017). Phenolic composition and medicinal usage of Psidium guajava Linn.: Antifungal activity or inhibition of virulence? Saudi Journal of Biological Sciences. 24(2), 302–313. DOI:10.1016/j.sjbs.2015.09.028 Morais-Braga, M., Carneiro, J., Machado, A.., dos Santos, A.., Sales, D., Lima, L.., Figueredo, F. , Coutinho E. (2016). Psidium guajava L., from ethnobiology to scientific evaluation: Elucidating bioactivity against pathogenic microorganisms. In Journal of Ethnopharmacology. 194(1140–1152). Elsevier Ireland Ltd. DOI:10.1016/j.jep.2016.11.017 Morais-Braga, M., Sales, D., dos Santos, F., Silva, F., Pereira, T., Chaves, de Carvalho, V., Torres W, Ribeiro-Filhoe R, Coutinho, H. (2016). Psidium guajava L. and Psidium brownianum Mart ex DC. potentiate the effect of antibiotics against Gram-positive and Gram-negative bacteria. European Journal of Integrative Medicine. 8, 683–687 Moreira, R., Pereira, D. M., Valentão, P., Andrade, P. B. (2018). Pyrrolizidine alkaloids: Chemistry, pharmacology, toxicology and food safety. International Journal of Molecular Sciences, 19(6). DOI:10.3390/ijms19061668 Mulabagal, V., & Tsay, H. (2004a). Plant Cell Cultures-An Alternative and Efficient Source for the Production of Biologically Important Secondary Metabolites. International Journal of Applied Science and Engineering. 2(1), 29-28. Mulyaningsih, S., Sporer, F., Reichling, J., & Wink, M. (2011). Antibacterial activity of essential oils from Eucalyptus and of selected components against multidrug-resistant bacterial pathogens. Pharmaceutical Biology, 49(9), 893–899. DOI:org/10.3109/13880209.2011.553625 Muñoz, C., Chavez, R., Ludy, C., Rendón, F., Margarita, R., Pabón, L., Otálvaro-Alvarez, Á.. (2015). Extracción de compuestos fenólicos con antividad antioxidante a partir de Champa. Revista CENIC. Ciencias Químicas, 46(38– 46). Muthamilselvan, T., Kuo, T., Wu, Y. C., y Yang, W. C. (2016). Herbal remedies for coccidiosis control: A review of plants, compounds, and anticoccidial actions. Evidence-based Complementary and Alternative medicine. 2016:1-19. DOI: 10.1155/2016/2657981 Nascimento, G. G., Locatelli, J., Freitas, P. C., Silva, G. L. (2000). Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Brasilian journal of microbiology, 31(4), 247-256. Naczk, M., & Shahidi, F. (2004). Extraction and analysis of phenolics in food. Journal of Chromatography A, 1054(1– 2), 95–111. DOI:org/10.1016/j.chroma.2004.08.059 Neish, A. S. (2009). Microbes in Gastrointestinal Health and Disease. Gastroenterology, 136(1), 65–80. DOI.org/10.1053/j.gastro.2008.10.080 Neri-Numa, I., Carvalho-Silva, L., Morales, J., Malta, L., Muramoto, M., Ferreira, J., de Carvalho, J., Ruiz, A., Maróstica Junior, M., Pastore, G. (2013). Evaluation of the antioxidant, antiproliferative and antimutagenic
dc.relationpotential of araçá-boi fruit (Eugenia stipitata Mc Vaugh - Myrtaceae) of the Brazilian Amazon Forest. Food Research International, 50(1), 70–76. DOI:org/10.1016/j.foodres.2012.09.032 Nghonjuyi, N. W., Tiambo, C. K., Kimbi, H. K., Manka’a, C. N., Juliano, R. S., & Lisita, F. (2015). Efficacy of ethanolic extract of Carica papaya leaves as a substitute of sulphanomide for the control of coccidiosis in KABIR chickens in Cameroon. Journal of Animal Health and Production, 3(1), 21-27. Noy, Y., & Sklan, D. (1995). Digestion and absorption in the young chick. Poultry Science, 74(2), 366–373. DOI:org/10.3382/ps.0740366 Oakley, B., Lillehoj, H., Kogut, M., Kim, W., Maurer, J., Pedroso, A., Lee, M., Collett, S., Johnson, T. J., Cox, N. (2014). The chicken gastrointestinal microbiome. Microbiology Letters, 360(2), 100–112. DOI:org/10.1111/1574- 6968.12608 OFFARM. (2004). Ácido ursólico. 23, 153–155. Oliveira, J., Alves, C., Miranda, M., Martins, C., Silva, T., Ambrosio, M., Alves, J., Silva, J. (2016). Rendimento, composição química e atividades antimicrobiana e antioxidante do óleo essencial de folhas de Campomanesia adamantium submetidas a diferentes métodos de secagem. Revista Brasileira de Plantas Medicinais, 18(2), 502–510. DOI:org/10.1590/1983-084X/15_206 Osawa, T., & Namiki, M. (1981). A novel type of antioxidant isolated from leaf wax of eucalyptusleaves. Agricultural and Biological Chemistry, 45(3), 735–739. DOI:org/10.1080/00021369.1981.10864583 Osorio, V., & Coromoto, D. (2008). Actividad biológica y farmacológica de diterpenos del labdano 2 . Aislamiento, caracterización estructural y actividad biológica de diterpenos del labdano del Oxylobus glanduliferus Trabajo de Grado de Maestría. Facultad de Farmacia y Bioanálisis. Universidad de Los Andes. Mérida. Venezuela. Ospina, C., Penagos, R., Hernández-Restrepo, C., Rodas-Peláez, J., Urrego, Osorio L, Godoy B, Aristizábal F, RiañoHerrera O. (2006). El Eucalipto. Guías silviculturales : Federación Nacional de Cafeterios de Colombia. 49. DOI:10.2307/j.ctvqmp41v.39 Otálvaro, M., Pabón, C., Rendón, R., Chaparro, P. (2017). Microwave extraction of champa (Campomanesia lineatifolia Ruiz & Pav.) fruit: alternative to obtain natural antioxidants. Acta Agron. 67(1), 53–58. DOI:10.15446/acag.v67n1.61367 Pacheco, L., Ethur, E., Sheibel, T., Buhl, B., Weber, A., Kauffmann, C., Marchi, M. , Freitas, E., Hoehne, L. (2021). Chemical characterization and antimicrobial activity of Campomanesia aurea against three strains of Listeria monocytogenes. Brasilian Journal of Biology, 81(1), 69–76. DOI:org/10.1590/1519-6984.219889 Pan, D., & Yu, Z. (2013). Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes, 5(1). DOI:org/10.4161/gmic.26945 Park, H., Choi, K., Shin, I. (2013). Antimicrobial activity of isothiocyanates(itcs) extracted from horseradish (armoracia rusticana) root against oral microorganisms. Biocontrol Science, 18(3), 163–168. DOI:10.4265/bio.18.163 Park, S., Hanning, I., Perrota, A., Bench, B., Alm, E., Ricke, S. (2013). Modifying the gastrointestinal ecology in alternatively raised poultry and the potential for molecular and metabolomic assessment. Poultry Science, 92(2), 546–561. DOI:10.3382/ps.2012-02734 Parra, C. (2013). Una especie nueva de myrcia (Myrtaceae) y nuevos registros de la familia para colombia a new species of Myrcia (Myrtaceae) and new records for the family in Colombia. Caldasia. 5: 2-25. Parra, C. (2014). Sinopsis de la familia Myrtaceae y clave para la identificación de los géneros nativos e introducidos en Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 38(148), 261-277. Pascoal, A., Ehrenfried, C., Eberlin, M., Stefanello, M., Salvador, M. (2011). Free radical scavenging activity, determination of phenolic compounds and HPLC-DAD/ESI-MS profile of Campomanesia adamantium leaves. Natural Product Communications, 6(7), 969–972. DOI:org/10.1177/1934578x1100600711 Pastrana, Y., Acevedo, D., Durango, A. (2017). Efecto antimicrobiano del clavo y la canela sobre patógenos. Biotecnología en el Sector Agropecuario y Agroindustrial. 15(1), 56. DOI:org/10.18684/bsaa(15)56-65 Patel, P., Joshi Ch., Birdi T, Kothari J. (2019). Anti-infective efficacy of Psidium guajava L. leaves against certain pathogenic bacteria. F1000Research. 8(12), 1-13. DOI:10.12688/f1000research.17500.1 Patterson, J & Burkholder, K. (2003). Application of prebiotics and probiotics in poultry production. Poultry Science 82: 627–631. Patra, A., Amasheh, S., Aschenbach, J. (2019). Modulation of gastrointestinal barrier and nutrient transport function in farm animals by natural plant bioactive compounds–A comprehensive review. Critical Reviews in Food Science and Nutrition, 59(20), 3237–3266. DOI:/10.1080/10408398.2018.1486284 Pei, R., Liu, X., & Bolling, B. (2020). Flavonoids and gut health. Current Opinion in Biotechnology, 61, 153–159. DOI:/10.1016/j.copbio.2019.12.018 Peñarrieta, J., Tejeda, L., Mollinedo, P., Vila, J., Bravo, J. (2014). Phenolic compounds in food . In Bolivian Journal of Chemistry. 31(2): 68-81. Peng, J., Zheng, T., Li, X., Liang, Y., Wang, L., Huang, Y. C., Xiao, H. (2019). Plant-derived alkaloids: The promising disease-modifying agents for inflammatory bowel disease. Frontiers in Pharmacology, 10(apri), 1–15. DOI:org/10.3389/fphar.2019.00351 Pérez-Arbeláez E. (1996) Plantas útiles de Colombia. Quinta edición. Fondo FEN Colombia. DAMA, Jardín Botánico José Celestino Mutis, Bogotá. 831 p Petillo, D., & Hultin, H. O. (2008). Ubiquinone-10 as an antioxidant. Journal of Food Biochemistry. 32 (2008) 173
dc.relationPicasso-Botto, M. (1997). Cultivo de Frutales Nativos Amazónicos. Food and Agriculture Organization of the United Nations. 337 pp. Philip, D., Kumari, I., avanya. (2015). Phytochemical analysis, antioxidant and anti microbial activity of white & pink Psidium guajava linnaeus. Int J Curr Pharm Res. 7 (2), 29-31 Porras A, & López A. (2009). Importancia de los grupos fenólicos en los alimentos. Temas Selectos de Ingeniería de Alimentos. 3(1), 121–134. Porres, M., González, E., Carretero, M., Gómez, M. (2015). Major selected monoterpenes -pinene and 1,8-cineole found in Salvia lavandulifolia (Spanish sage) essential oil as regulators of cellular redox balance. Pharmaceutical Biology, 53(6), 921–929. DOI:10.3109/13880209.2014.950672 Prado, L., Silva, D., De Oliveira-Silva, G., Hiraki, K., Canabrava, H., Bispo-da-Silva, L. B. (2014). The gastroprotective effects of Eugenia dysenterica (Myrtaceae) leaf extract: The possible role of condensed tannins. Biological and Pharmaceutical Bulletin, 37(5), 722–730. DOI:10.1248/bpb.b13-00514 Pond, W., Church D, Pond, K., Schoknecht, P. (2005). Basic Animal Nutrition and Feeding, 5th ed. Uthea Noriega Editores. 438 pp. Quiroz C & Dantan G. (2015). Control of avian coccidiosis: future and present natural alternatives, BioMed Research International, 11 p Quevedo, E. (1995). Aspectos agronómicos sobre el cultivo del arazá (Eugenia stipitata). Frutal promisorio de la amazonia colombiana. Agronomía Colombiana, 12(1), 27–65. Ramezani, H., Singh, H., Batish, D., Kohli, R. (2002). Antifungal activity of the volatile oil of Eucalyptus citriodora. Fitoterapia, 73(3), 261–262. DOI:org/10.1016/S0367-326X(02)00065-5 Ravi, K., & Divyashree, P. (2014). Psidium guajava: A review on its potential as an adjunct in treating periodontal disease. Pharmacognosy Reviews. 8(16), 96–100. DOI:org/10.4103/0973-7847.134233 Rehman, H., Vahjen, W., Awad, W., Zentek, J. (2007). Indigenous bacteria and bacterial metabolic products in the gastrointestinal tract of broiler chickens. Archives of Animal Nutrition, 61(5), 319–335. DOI:10.1080/17450390701556817 Rodríguez, C., Waxman, S., Lucas Burneo, J. (2017). Particularidades anatómicas, fisiológicas y etológicas con repercusión terapéutica, en medicina aviar/(II): aparato digestivo, aparato cardiovascular, sistema músculoesquelético, tegumento y otras características. Portalfarma, 18 Rojas, M. A. (2006). Estudio químico de Berberis coletioides Lechl. 66. Sá, S., Chaul, L., Alves, V., Fiuza, T., Tresvenzol, L., Vaz, B., Ferri, P., Borges, L., Paula, J. (2018). Phytochemistry and antimicrobial activity of Campomanesia adamantium. Revista Brasileira de Farmacognosia, 28(3), 303–311. DOI:org/10.1016/j.bjp.2018.02.008 Scarpa, G.& Anconatani, L.(2017). Etnobotanica historica de las misisones franciscanas del este de Formosa II: Identificación y análisis de datos inéditos y reelaboración integral de fuentes ya publicadas a partir de hallazgos documentales. Dominguezia. 33(2), 39-79 Salazar, D., Melgarejo, P., Martínez, R., Martínez, J., Hernández, F., Burguera, M. (2006). Phenological stages of the guava tree (Psidium guajava L.). Scientia Horticulturae, 108(2), 157–161. DOI:org/10.1016/j.scienta.2006.01.022 Salinas, A., Araujo G., Cisneros, H., Villena, N., Senosain, T., Huarcaya, M., Arroyo, A. (2011). Inhibición del tránsito intestinal por el extracto metanólico de las hojas de Annona muricata L (guanábana) en ratones. Ciencia e Investigación, 14(1), 9–14. DOI:org/10.15381/ci.v14i1.3159 Salvo-Romero, E., Alonso-Cotoner, C., Pardo-Camacho, C., Casado-Bedmar, M., Vicario, M. (2015). Función barrera intestinal y su implicación en enfermedades digestivas. Revista Española de Enfermedades Digestivas, 107(11), 686–696. Sarmiento, M., Barros, R., Diomedes, A., Paternina, G., Mejía, A., Deivis, T., Rivero, S. (2018). Productos naturales: metabolitos secundarios y aceites esenciales. Fundación Universitaria Agraria de Colombia-UNIAGRARIA, Colombia. 52 p. Sartorelli, P., A. D. M., Amaral-Baroli, M., Lima, E., Moreno., P. R. H. (2007). Chemical Composition and Antimicrobial Activity of the Essential Oils from Two Species of Eucalyptus. Phytotherapy Research, 21(4), 231– 233. DOI:org/10.1002/ptr Scanes,C., & Pierzchala-Koziec, K. (2014). Biology of the gastro-intestinal tract in poultry. Avian Biology Research, 7(4), 193–222. DOI:org/10.3184/175815514X14162292284822 Serra, A. (2008). Quinolonas. Separata Montpellier. 36 pp Shang, Y., Kumar, S., Oakley, B., & Kim, W. K. (2018). Chicken gut microbiota: importance and detection technology. Frontiers in veterinary science, 5, 254. DOI:org/10.3389/fvets.2018.00254 Silva, J., Worku, A., Sousa, S. M., Machadoc, M., Matos, F. (2003). Analgesic and anti-inflammatory effects of essential oils of Eucalyptus. Journal of Ethnopharmacology, 89, 277–283. DOI:org/10.1016/j.jep.2003.09.007 Silva, E., Estevam, E., Silva, T., Nicolella, H., Furtado R,. Alves, C., Souchie, E., Martins, Tavares,C., Barbosa, B., Mirandad, M., (2019). Antibacterial and antiproliferative activities of the fresh leaf essential oil of Psidium guajava L. (Myrtaceae). Brasilian Journal of Biology. 79(4), 697-702 Silveira, R., Urano A., Oliveira, M., Ribeiro da Costa, I.(2021). Diversity of the Chemical Composition of Essential Oils of Eugenia (Myrtaceae): a review. Brasilian Journal of Development., 7(3),33276-3330
dc.relationSingletary, K. (2020). Vanilla: Potential Health Benefits. Nutrition Today- 55(4): 186–196. DOI:10.1097/NT.0000000000000412 Srinivas N (2009). Structurally modified ‘dietary flavonoids’: are these viable drug candidates for chemoprevention? Curr Clin Pharmacol. 4:67–70. Siriken, B., Yavuz, C., Guler, A. (2018). Antibacterial Activity of Laurus nobilis: A review of literature. Medical Science and Discovery, 90(438), 374–379. DOI:10.17546/msd.482929 Smirnov, A., Sklan, D., & Uni, Z. (2004). Mucin Dynamics in the Chick Small Intestine Are Altered by Starvation. Journal of Nutrition, 134(4), 736–742. DOI:10.1093/jn/134.4.736 Soliman, F., Fathy, M., Salama, M., Saber, F. (2016). Comparative study of the volatile oil content and antimicrobial activity of Psidium guajava L. and Psidium cattleianum Sabine leaves. Bulletin of Faculty of Pharmacy, 54(2), 219–225. DOI:10.1016/j.bfopcu.2016.06.003 Somova, L. , Shode, F., Ramnanan, P., Nadar, A. (2003). Antihypertensive, antiatherosclerotic and antioxidant activity of triterpenoids isolated from Olea europaea, subspecies africana leaves. Journal of Ethnopharmacology, 84(2–3), 299–305. DOI:org/10.1016/S0378-8741(02)00332-X Son, J., Ragland, D., Adeola, O. (2002). Quantification of digesta flow into the caeca. British Poultry Science, 43(2), 322–324. DOI:10.1080/00071660120121562 Souza, H., Parent, S., Rozane, D., Amorim, D., Modesto, V., Natale, W., Parent, L. (2016). Guava waste to sustain guava (Psidium guajava) agroecosystem: Nutrient “balance” concepts. Frontiers in Plant Science, 7 1–13. DOI:10.3389/fpls.2016.01252 Stefanello, M., Pascoal, A., Salvador, M. (2011). Essential oils from neotropical Myrtaceae: chemical diversity and biological properties. Chemistry & biodiversity, 8(1), 73-94. Rameshwari, S. & Priya, S. (2020). Phytochemical screening, HPTLC, antimicrobial activity in extracts of Psidium guajava and Piper betle leaves combination (PGPB). International Journal of Scientific and Technology Research, 9(3), 7008–7018. Sun, H., Tang, J. wu, Yao, X. hong, Wu, Y. fei, Wang, X., Feng, J. (2013). Effects of dietary inclusion of fermented cottonseed meal on growth, cecal microbial population, small intestinal morphology, and digestive enzyme activity of broilers. Tropical Animal Health and Production, 45(4), 987–993. DOI:10.1007/s11250-012-0322 Taha, H., El-Bahr, M., Seif-El-Nasr, M. (2009). In vitro studies on Egyptian Catharanthus roseus (L.). Ii. Effect of biotic and abiotic stress on indole alkaloids production. Journal of Applied Sciences Research, 5(10) Tenorio-Huamani, S. & Muñoz, C. (2021). Actividad antibacteriana in vitro del aceite esencial de las hojas de Eugenia stipitata McVaugh (arazá) frente a Staphylococcus aureus, Escherichia coli y Salmonella enterica sv enteritidis. Timbermont, L., Haesebrouck, F., Ducatelle, R., Van Immerseel, F. (2011). Necrotic enteritis in broilers: An updated review on the pathogenesis. Avian Pathology, 40(4), 341–347. DOI:10.1080/03079457.2011.590967 Torok, V. , Hughes, R., Mikkelsen, L., Pérez-Maldonado, R., Balding, K., MacAlpine, R., Percy, N., Ophel-Keller, K. (2011). Identification and characterization of potential performance-related gut microbiotas in broiler chickens across various feeding trials. Applied and Environmental Microbiology, 77(17), 5868–5878. DOI:org/10.1128/AEM.00165-11 Uni, Z., Geyra, A., Ben-Hur, H., Sklan, D. (2000). Small intestinal development in the young chick: Crypt formation and enterocyte proliferation and migration. British Poultry Science, 41(5), 544–551. DOI:10.1080/00071660020009054 Vadlapudi, V., & Kaladhar, D. (2012). Phytochemical evaluation and molecular characterization of some important medicinal plants. Asian Pacific Journal of Tropical Disease, 2(suppl.1). DOI:10.1016/S2222-1808(12)60118-2 Valdés, L. , Iturralde, G., García-Tenesaca, M., Paredes, J., Narváez, D., Rojas, M., Alvarez, J. (2018). Physicochemical parameters, chemical composition, antioxidant capacity, microbial contamination and antimicrobial activity of Eucalyptus honey from the Andean region of Ecuador. Journal of Apicultural Research, 57(3), 382-394. Vallilo, M. , Garbelotti, M.., Oliveira, E., Lamardo, L. (2005). Características físicas e químicas dos frutos do cambucizeiro (Campomanesia phaea). Revista Brasileira de Fruticultura, 27(2), 241–244. DOI:org/10.1590/s0100-29452005000200014 Van Der Klis and Vinyeta-Punti E (2014). The potential of phytogenic feed additives in pigs and poultry. In: Proceedings of 18th Congress of the European Society of Veterinary & Comparative Nutrition, At Utrecht, Netherlands. Volume 18. Van Immerseel, F., Rood, J. I., Moore, R. J., Titball, R. W. (2009). Rethinking our understanding of the pathogenesis of necrotic enteritis in chickens. Trends in Microbiology, 17(1), 32–36. DOI:10.1016/j.tim.2008.09.005 Wang, L., Xie, J., Huang, T., Ma, Y., & Wu, Z. (2017). Characterization of silver nanoparticles biosynthesized using crude polysaccharides of Psidium guajava L. leaf and their bioactivities. Materials Letters, 208, 126–129. Vázquez, E. (2015). Actividades biológicas de extractos de plantas y de sus combinaciones. 319 pp. Vidanarachchi, J., Mikkelsen, L., Sims, I., Iji, P., Choct, M. (2005). Phytobiotics : alternatives to antibiotic growth promoters in monogastric animal feeds. Recent Advances in Animal Nutrition in Australia, 15 (131–144). Vieira C., Mello,M., Amorim, J., Faraco, Castilho, R. (2020). Optimization of phenolic compounds extraction from Campomanesia lineatifolia leaves. Rodriguesia, 71(1–9). Villachica. (1996). Frutales y Hortalizas Promisorias de la Amazonia. Tratado de Cooperación Amazonica. Secretaria
dc.relationllas Boas, G. , Carvalho dos Santos, A., Carvalho Souza, R. , Souza de Araújo, F., Traesel, G., Marcelino, J., Stefanello da Silveira, A., Farinelli, B., Cardoso, C., Boerngen de Lacerda, R., Oesterreich, S. (2018). Preclinical safety evaluation of the ethanolic extract from guavira fruits (Campomanesia pubescens) in experimental models of acute and short-term toxicity in rats. Food and Chemical Toxicology, 118,1–12. DOI:10.1016/j.fct.2018.04.063 Vinardell, M., Ugartondo, V., Mitjans, M. (2008). Potential applications of antioxidant lignins from different sources. Industrial Crops and Products, 27(2), 220–223. DOI:org/10.1016/j.indcrop.2007.07.011 Vinholes, J., Lemos, G., Barbieri, R., Franzon, R., Vizzotto, M. (2017). In vitro assessment of the antihyperglycemic and antioxidant properties of araçá, butiá and pitanga. Food Bioscience, 19, 92–100. DOI: 10.1016/j.fbio.2017.06.005 Viscardi, D., de Oliveira, V., Arrigo, J., Piccinelli, A., Cardoso, C., Maldonade, I., Kassuya, C., Sanjinez, E. (2017). Antiinflammatory, and antinociceptive effects of Campomanesia adamantium microencapsulated pulp. Revista Brasileira de Farmacognosia, 27(2), 220–227. DOI:10.1016/j.bjp.2016.09.007 Vo, Q., Trenerry, C., Rochfort, S., Wadeson, J., Leyton, C., & Hughes, A. B. (2013). Synthesis and anti-inflammatory activity of aromatic glucosinolates. Bioorganic and Medicinal Chemistry, 21(19), 5945–5954. DOI:10.1016/j.bmc.2013.07.049 Von Martius, S., Hammer, K., Locher, C. (2012). Chemical characteristics and antimicrobial effects of some Eucalyptus kinos. Journal of ethnopharmacology, 144(2), 293-299. Wang J, Guleria S, Koffas M., Yan Y. (2016). Microbial production of value-added nutraceuticals. Curr Opin Biotechnol. 37:97–104. Watson, R. (2019). Polyphenols in plants: isolation, purification and extract preparation.Second edition. Academic Press .Elsevier. 44 p. Wei, S., Morrison, M., Yu, Z. (2013). Bacterial census of poultry intestinal microbiome. Poultry Science, 92(3), 671– 683. DOI:org/10.3382/ps.2012-02822 Wenk, C. (2003). Herbs and Botanicals for Monogastric Animals. Asian Australian Journal of Animal Sciences, 16(2), 282–290. Wilson, P., O’brien, M., Gadek, P., Quinn., A (2013). Myrtaceae revisited:a reassessment ofnfrafamilial group. American Journal of Botany. 88(11), 2013–2025 Windisch, W., Schedle, K., Plitzner, C., & Kroismayr, A. (2008). Use of phytogenic products as feed additives for swine and poultry. Journal of Animal Science, 86(14), E140–E148. DOI:org/10.2527/jas.2007-0459 Wink M (2010). Biochemistry of Plant Secondary Metabolism.Vol 1. Second Edition. Blackwell Publishing. 481 Wu G (2018) Principles of Animal Nutrition. Taylor & Francis Group. 801 pp . Yáñez, X., Mogollón, C., & Fernando, O. (2012). Composición química y actividad antibacteriana del aceite esencial de las especies Eucalyptus globulus y Eucalyptus camaldulensis de tres zonas de Pamplona (Colombia). Bistua: Revista de la facultad de Ciencias Basicas 10(1), 52–61. DOI:10.24054/01204211.v1.n1.2012.48 Yanishlieva, N., Marinova, E., Gordon, M., Raneva, V. (1999). Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems. Food Chemistry, 64(1), 59–66. DOI:10.1016/S0308-8146(98)00086- 7 Zhao, C., Nguyen, T., Liu, L., Sacco, R., Brogden, K., Lehrer, R. (2001). Gallinacin-3, an inducible epithelial β-defensin in the chicken. Infection and Immunity, 69(4), 2684–2691. DOI:10.1128/IAI.69.4.2684-2691.2001
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.rightsAcceso restringido
dc.subjectSector avícola
dc.subjectPotencial fitobiótico
dc.titlePotencial fitobiótico de Mirtáceas presentes en Colombia: Psidium guajava (GUAYABA), Eugenia stipitata (ARAZÁ), Campomanesia lineatifolia (CHAMPA) y Eucalyptus spp. (EUCALIPTO), como promotores de salud gastrointestinal en aves de producción.


Este ítem pertenece a la siguiente institución