dc.creatorPalacio-Morales, Jairo
dc.creatorTobón, Andrés
dc.creatorHerrera, Jorge
dc.date.accessioned2022-08-23T15:33:50Z
dc.date.accessioned2022-09-23T18:20:34Z
dc.date.available2022-08-23T15:33:50Z
dc.date.available2022-09-23T18:20:34Z
dc.date.created2022-08-23T15:33:50Z
dc.identifier2227-9717
dc.identifierhttps://doi.org/10.3390/pr9122283
dc.identifierhttp://hdl.handle.net/20.500.12010/28002
dc.identifierhttp://expeditiorepositorio.utadeo.edu.co
dc.identifierhttps://doi.org/10.3390/pr9122283
dc.identifier
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3499149
dc.description.abstractIn this paper, an approach for the tuning of a model-based non-linear predictive control (NMPC) is presented. The proposed control uses the pattern search optimization algorithm (PSM), which is applied to the pH non-linear control in the alkalinization process of sugar juice. First, the model identification is made using the Takagi Sugeno T-S fuzzy inference systems with multidimensional fuzzy sets; the next step is the controller parameters tuning. The PSM algorithm is used in both cases. The proposed approach allows the minimization of model uncertainty and decreases, in the response, the error in a steady state when compared with other authors who perform the same procedure but apply other optimization algorithms. The results show an improvement in the steady-state error in the plant response.
dc.languageeng
dc.publisherBogotá : Universidad de Bogotá Jorge Tadeo Lozano, 2020
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAbierto (Texto Completo)
dc.subjectAlgorithm
dc.subjectSugar Juice
dc.titleOptimization Based on Pattern Search Algorithm Applied to pH Non-Linear Control


Este ítem pertenece a la siguiente institución