dc.creatorDe la Sen, Manuel
dc.creatorIbeas, Asier
dc.creatorHerrera, Jorge
dc.date.accessioned2020-05-26T16:23:36Z
dc.date.accessioned2022-09-23T18:08:16Z
dc.date.available2020-05-26T16:23:36Z
dc.date.available2022-09-23T18:08:16Z
dc.date.created2020-05-26T16:23:36Z
dc.identifierhttp://doi.org/10.1186/s40064-016-2057-0
dc.identifierhttp://hdl.handle.net/20.500.12010/9554
dc.identifierhttp://expeditiorepositorio.utadeo.edu.co
dc.identifierhttp://doi.org/10.1186/s40064-016-2057-0
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3496030
dc.description.abstractIn the framework of complete probabilistic Menger metric spaces, this paper investigates some relevant properties of convergence of sequences built through sequences of operators which are either uniformly convergent to a strict k-contractive operator, for some real constant k ∈ (0, 1), or which are strictly k-contractive and point-wisely convergent to a limit operator. Those properties are also reformulated for the case when either the sequence of operators or its limit are strict -contractions. The definitions of strict (k and ) contractions are given in the context of probabilistic metric spaces, namely in particular, for the considered probability density function. A numerical illustrative example is discussed.
dc.publisherUniversidad Jorge Tadeo Lozano
dc.rightsAbierto (Texto Completo)
dc.sourcereponame:Expeditio Repositorio Institucional UJTL
dc.sourceinstname:Universidad de Bogotá Jorge Tadeo Lozano
dc.subjectStrict contractions
dc.subjectStrict ϕ-contractions
dc.subjectProbabilistic metric spaces
dc.subjectMenger spaces
dc.subjectTriangular norms
dc.titleOn fixed points and convergence results of sequences generated by uniformly convergent and point‑wisely convergent sequences of operators in Menger probabilistic metric spaces


Este ítem pertenece a la siguiente institución