dc.contributor | Santamaría Vanegas, Johanna | |
dc.contributor | Comba González, Natalia Beatriz | |
dc.creator | Millán Aldana, Nohora Angélica | |
dc.date.accessioned | 2022-01-18T15:10:34Z | |
dc.date.accessioned | 2022-09-23T18:03:38Z | |
dc.date.available | 2022-01-18T15:10:34Z | |
dc.date.available | 2022-09-23T18:03:38Z | |
dc.date.created | 2022-01-18T15:10:34Z | |
dc.identifier | http://hdl.handle.net/20.500.12010/24540 | |
dc.identifier | http://expeditio.utadeo.edu.co | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3494202 | |
dc.description.abstract | El litoral rocoso es un ecosistema que debido a sus características estructurales proporciona hábitat a múltiples organismos marinos, entre los cuales se encuentran las macroalgas, estas son un hábitat propicio para bacterias epífitas y endófitas las cuales tienes diversas capacidades metabólicas como la producción enzimática. Por esta razón, el objetivo de este trabajo es estudiar las comunidades de bacterias epífitas y endófitas de la macroalga Ulva lactuca para establecer una línea base de conocimiento que permita en futuros proyectos evaluar su potencial de producción de sustancias de interés biotecnológico. Para iniciar la exploración de las comunidades de bacterias asociadas a esta macroalga, se llevó a cabo la recolecta de U. lactuca en el litoral rocoso supralitoral en punta de la loma del Caribe colombiano y el posterior aislamiento de sus bacterias asociadas con metodologías tradicionales de cultivo. Se aislaron 64 y 55 morfotipos de bacterias epífitas y endófitas respectivamente. El género más representativo de los aislamientos para microorganismos epífitos fue Vibrio sp y Bacillus sp para los endófitos. Dentro de los aislamientos, los bacilos Gram negativos fueron los más frecuentes en los microorganismos que habitan en la superficie y los bacilos Gram positivos para los que habitan el interior de U. lactuca. | |
dc.language | spa | |
dc.publisher | Universidad de Bogotá Jorge Tadeo Lozano | |
dc.publisher | Biología marina | |
dc.publisher | Facultad de Ciencias Naturales e Ingeniería | |
dc.relation | Albakosh, M. A., Naidoo, R. K., Kirby, B., & Bauer, R. (2016). Identification of epiphytic bacterial communities associated with the brown alga Splachnidium rugosum. Journal of Applied Phycology, 28(3), 1891-1901. | |
dc.relation | Abbott, I. A., Isabella, A., & Hollenberg, G. J. (1992). Marine algae of California. Stanford University Press | |
dc.relation | Albornoz, O. (1986). Macroalgas marinas del estado Falcón (Venezuela). Bol. Centro Invest. Biol., 17 | |
dc.relation | Ahmed, E. F., Hassan, H. M., Rateb, M. E., Abdel-Wahab, N., Sameer, S., Ebel, R., ... & Hammouda, O. (2016). A Comparative biochemical study on two marine endophytes, Bacterium SRCnm and Bacillus sp. JS, Isolated from red sea algae. Pakistan journal of pharmaceutical sciences, 29(1). | |
dc.relation | ANIÑIR, K. E. S. (2015). IDENTIFICACIÓN Y ACTIVIDAD ANTIMICROBIANA DE BACTERIAS EPÍFITAS DEL ALGA Nothogenia fastigiata DE LA COSTA DE VALDIVIA (Doctoral dissertation, Universidad Austral de Chile). | |
dc.relation | Apimeteethamrong, S., & Kittiwongwattana, C. (2019). Diversity and plant growth promoting activities of rice epiphytic bacteria. Current Applied Science and Technology, 19(2), 66-79 | |
dc.relation | Ash C,Priest FG,Collins MD (1993-1994). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 64, 253-60. | |
dc.relation | Asis Jr, C. A., & Adachi, K. (2004). Isolation of endophytic diazotroph Pantoea agglomerans and nondiazotroph Enterobacter asburiae from sweetpotato stem in Japan. Letters in Applied Microbiology, 38(1), 19-23. | |
dc.relation | Bagnères, A. G., & Hossaert-McKey, M. (2020). Ecología química. ISTE Group. | |
dc.relation | Bashir, S., Iqbal, A., Hasnain, S., & White, J. F. (2021). Screening of sunflower associated bacteria as biocontrol agents for plant growth promotion. Archives of Microbiology, 203(8), 4901-4912. | |
dc.relation | Beijerinck MW (1889). Le Photobacterium luminosum, Bactérie lumineuse de la Mer du Nord. Arch. Neerl. Sci. Exactes Nat. 23, 401-427. | |
dc.relation | Bernal Martínez, A. W. (2019). Estudio de la biodiversidad bacteriana de ecosistemas del departamento del Atlántico como fuente de posibles compuestos antituberculosis y antibacterianos (Master's thesis, Universidad del Norte). | |
dc.relation | Bibi, F., Ullah, I., Alvi, S. A., Bakhsh, S. A., Yasir, M., Al-Ghamdi, A. A. K., & Azhar, E. I. (2017). Isolation, diversity, and biotechnological potential of rhizo-and endophytic bacteria associated with mangrove plants from Saudi Arabia. Genetics and Molecular Research, 16(2) | |
dc.relation | Biegala, I. C., Kennaway, G., Alverca, E., Lennon, J. F., Vaulot, D., & Simon, N. (2002). Identification of bacteria associated with Dinoflagellates (Dinophyceae) Alexandrium Spp. using tyramide signal amplification–fluorescent In situ hybridization and confocal microscopy1. Journal of Phycology, 38(2), 404-411. | |
dc.relation | Bonanno, G., Veneziano, V., Raccuia, S. A., & Orlando-Bonaca, M. (2020). Seagrass Cymodocea nodosa and seaweed Ulva lactuca as tools for trace element biomonitoring. A comparative study. Marine Pollution Bulletin, 161, 111743 | |
dc.relation | Boraso, A. L. (2013). Elementos para el estudio de las macroalgas de Argentina. Comodoro Rivadavia: Universidad de la Patagonia. | |
dc.relation | Brisson, V. L., Schmidt, J. E., Northen, T. R., Vogel, J. P., & Gaudin, A. C. (2019). Impacts of maize domestication and breeding on rhizosphere microbial community recruitment from a nutrient depleted agricultural soil. Scientific reports, 9(1), 1-14 | |
dc.relation | Bula-Meyer G. (1998) Estado actual de la taxonomía de las macroalgas marinas de Colombia Boletín Ecotrópica 33:1-13 | |
dc.relation | Cabarcas Jiménez, M. P. (2016). Dinámica estructural de la comunidad de macroalgas en la zona intermareal rocosa de punta la loma, Santa Marta (Bachelor's thesis, Universidad del Magdalena). | |
dc.relation | Call, H. P., & Mücke, I. (1997). History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym®-process). Journal of biotechnology, 53(2-3), 163-202. | |
dc.relation | Callow, M. E., Callow, J. A., Pickett-Heaps, J. D., & Wetherbee, R. (1997). Primary adhesion of enteromorpha (chlorophyta, ulvales) propagules: quantitative settlement studies and video microscopy 1. Journal of Phycology, 33(6), 938-947. | |
dc.relation | Cano Mallo, M., Díaz Larrea, J., Valdés-Iglesias, O., & Bustio, I. (2007). Componentes químicos y biomasa de Ulva fasciata (Chlorophyta) en la costa Norte de la Ciudad de la Habana, Cuba. Hidrobiológica, 17(1), 41-51. | |
dc.relation | Cano Mallo, M., Díaz Larrea, J., Valdés-Iglesias, O., Gómez Bastista, M., & Chopin, T. (2005). Distribución, cobertura, morfometría y concentración de pigmentos de Ulva fasciata Delile en la costa N de La Habana, Cuba. Hidrobiológica, 15(3), 261-274. | |
dc.relation | Carrim, A. J. I., Barbosa, E. C., & Vieira, J. D. G. (2006). Enzymatic activity of endophytic bacterial isolates of Jacaranda decurrens Cham. (Carobinha-do-campo). Brazilian Archives of Biology and Technology, 49(3), 353-359. | |
dc.relation | Carroll, G. (1988). Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology, 69(1), 2-9. | |
dc.relation | Castillejos, S., Robles, V & Robles I. (2015). Producción de lacasa a partir de hongos ligninolíticos utilizando vinazas y bagazo de origen mezcalero (Tesis para obtener el grado de Maestro en Ciencias: Productos Naturales y Alimntos). UNIVERSIDAD TECNOLÓGICA DE LA MIXTECA. Oaxaca México. | |
dc.relation | Chen, L., Luo, S., Li, X., Wan, Y., Chen, J., & Liu, C. (2014). Interaction of Cdhyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biology and Biochemistry, 68, 300-308. | |
dc.relation | Chun J, Lee J, Jung Y, Kim M, Kim S, Kim B, Lim Y. (2007). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. | |
dc.relation | CIOH (2020). Oceanografía Operacional. Recuperado el 14 de mayo de 2020, de Pronóstico de las condiciones meteorológicas y oceanográficas: https://www.cioh.org.co/meteorologia/PreCaAltamar.php | |
dc.relation | Colombo, P. M. (1978). Occurrence of endophytic bacteria in siphonous algae. Phycologia, 17(2), 148-151. | |
dc.relation | Comba-Gonzalez, N. B., Ruiz-Toquica, J. S., Lopez-Kleine, L., & Montoya-Castano, D. (2016). Epiphytic bacteria of macroalgae of the genus Ulva and their potential in producing enzymes having biotechnological interest. J Mar Biol Oceanogr 5, 2, 2. | |
dc.relation | Comba González, N. B. (2017). Caracterización molecular de bacterias epífitas de Ulva lactuca y búsqueda de enzimas con potencial biotecnológico. Tesis para optar al título de Doctora en Ciencias-Biología. Universidad Nacional de Colombia. | |
dc.relation | Comba N, Ramírez M.L, López L, Montoya D. (2018). Production of enzymes and siderophores by epiphytic bacteria isolated from the marine macroalga Ulva lactuca. Aquatic Biology. 27: 107-118. doi: 10.3354/ab00700. | |
dc.relation | CONANP (Comisión Nacional de Áreas Naturales Protegidas). (2003). Programa de manejo Parque Nacional Huatulco. | |
dc.relation | Córdova, A. (2006). Ordenamiento ecológico marino: visión temática de la regionalización. Instituto Nacional de Ecología. | |
dc.relation | Davis, A. R., Targett, N. M., McConnell, O. J., & Young, C. M. (1989). Epibiosis of marine algae and benthic invertebrates: natural products chemistry and other mechanisms inhibiting settlement and overgrowth. In Bioorganic marine chemistry (pp. 85-114). Springer, Berlin, Heidelberg. | |
dc.relation | Díaz G, Díaz M. (2003). Diversity of benthic marine algae of the Colombian Atlantic. Biota Colombiana. 4(2): 203-246. | |
dc.relation | Díaz, N. R., Gavio, B., & Rincón, N. (2016). Diversidad de Macroalgas Marinas del Caribe colombiano. | |
dc.relation | Díaz Ruiz, M. C. (2017). Ensayos de actividad biológica y ecología química de extractos orgánicos crudos de algunas macroalgas del Caribe colombiano (Bachelor's thesis, Universidad de Bogotá Jorge Tadeo Lozano). | |
dc.relation | Díez, I., Santolaria, A., & Gorostiaga, J. M. (2003). The relationship of environmental factors to the structure and distribution of subtidal seaweed vegetation of the western Basque coast (N Spain). Estuarine, Coastal and Shelf Science, 56(5-6), 1041-1054. | |
dc.relation | Dobretsov, S., Dahms, H. U., Harder, T., & Qian, P. Y. (2006). Allelochemical defense against epibiosis in the macroalga Caulerpa racemosa var. turbinata. Marine Ecology Progress Series, 318, 165-175 | |
dc.relation | Domínguez, A., Gomez, J., Lorenzo, M., & Sanromán, Á. (2007). Enhanced production of laccase activity by Trametes versicolor immobilized into alginate beads by the addition of different inducers. World Journal of Microbiology and Biotechnology, 23(3), 367-373. | |
dc.relation | Dong, Z. Y., Narsing Rao, M. P., Xiao, M., Wang, H. F., Hozzein, W. N., Chen, W., & Li, W. J. (2017). Antibacterial activity of silver nanoparticles against Staphylococcus warneri synthesized using endophytic bacteria by photo-irradiation. Frontiers in microbiology, 8, 1090. | |
dc.relation | Egan, S., Harder, T., Burke, C., Steinberg, P., Kjelleberg, S., & Thomas, T. (2013). The seaweed holobiont: understanding seaweed–bacteria interactions. FEMS Microbiology Reviews, 37(3), 462-476 | |
dc.relation | Eranhottu, S., Cherian, T., Suneel Kumar, Y., Samson, R., Richard, D. S., & Mohanraju, R. (2021). Isolation and characterization of epiphytic bacteria from the leaves of Halophila ovalis (R. Brown) JD Hooker, 1858 from South Andaman, India. Journal of Aquatic Biology & Fisheries, 9, 109-116 | |
dc.relation | Fang, Z., Li, T., Wang, Q., Zhang, X., Peng, H., Fang, W., ... & Xiao, Y. (2011). A bacterial laccase from marine microbial metagenome exhibiting chloride tolerance and dye decolorization ability. Applied microbiology and biotechnology, 89(4), 1103-1110. | |
dc.relation | Faulkner, D. J. (2001). Marine natural products. Natural product reports, 18(1), 1R-49R. | |
dc.relation | FITRI, D. S., PANGASTUTI, A., Susilowati, A. R. I., & SUTARNO, S. (2017). Endophytic bacteria producing antibacterial against methicillinresistant Staphylococcus aureus (MRSA) in seagrass from Rote Ndao, East Nusa Tenggara, Indonesia. Biodiversitas Journal of Biological Diversity, 18(2), 733-740. | |
dc.relation | Flewelling A, Ellsworth K, Sanford J, Forward E, Johnson J, Gray C. (2013). Macroalgal endophytes from the Atlantic Coast of Canada: a potential source of antibiotic natural products? Microorganisms. 1:175-187. doi:10.3390/microorganisms1010175. | |
dc.relation | Flórez-Leiva, L., Rangel-Campo, A., Díaz-Ruiz, M., Venera-Pontón, D. E., & Díaz-Pulido, G. (2010). Efecto de la sedimentación en el reclutamiento de las macroalgas Dictyota spp. y Lobophora variegata: un estudio experimental en el Parque Nacional Natural Tayrona, Caribe colombiano. Boletín de Investigaciones Marinas y Costeras, 39, 1. | |
dc.relation | Gao, X., Zheng, T., Yuan, X., Li, Z., & Wei, Y. (2021). Draft Genome Sequence of an Epiphytic Strain, Bacillus sp. Strain WL1, Isolated from the Surface of Nostoc flagelliforme Colonies in Yinchuan, Ningxia, China. Microbiology Resource Announcements, 10(30), e00382-21 | |
dc.relation | Gavini F,Mergaert J,Beji A,Mielcarek C,Izard D,Kersters K,De Ley J (1989). Transfer of Enterobacter agglomerans (Beijerinck 1888) Ewing & Fife 1972 to Pantoea gen. nov. as Pantoea agglomerans comb. nov. and description of Pantoea dispersa sp. nov. Int. J. Syst. Bacteriol. 39, 337-345. | |
dc.relation | Gamboa-Gaitán, M. A. (2006). Hongos endófitos tropicales: Conocimiento actual perpectivas. Acta Biológica Colombiana, 11, 3-20. | |
dc.relation | García C, Díaz G. (2006). Dynamics of a macroalgal rocky intertidal community in the Colombian Caribbean. Boletín de Investigaciones Marinas y Costeras. 35:7-18. | |
dc.relation | Giardina, P., & Sannia, G. (2015). Laccases: Old enzymes with a promising future. Cellular and Molecular Life Sciences, 72(5), 855-856. | |
dc.relation | González, D. J., Gonzalez, R. A., Froelich, B. A., Oliver, J. D., Noble, R. T., & McGlathery, K. J. (2014). Non-native macroalga may increase concentrations of Vibrio bacteria on intertidal mudflats. Marine Ecology Progress Series, 505, 29-36. | |
dc.relation | González, N. B. C., Corredor, A. N. N., Kleine, L. L., & Castaño, D. M. (2021). Temporal Changes of the Epiphytic Bacteria Community From the Marine Macroalga Ulva lactuca (Santa Marta, Colombian-Caribbean). Current Microbiology, 78(2), 534-543 | |
dc.relation | González, N. B. C., Castaño, D. M., & Lara, J. S. M. (2021). Genome sequence of the epiphytic bacteria Bacillus altitudinis strain 19_A, isolated from the marine macroalga Ulva lactuca. Biotechnology Reports, e00634. | |
dc.relation | González, V. B., Castillo, R., Sánchez, I. G., & Valdés, L. S. (2007). Caracterización toxicológica de las macroalgas marinas Hypnea spp y Sargasun spp para la futura utilización en la alimentación y la salud animal como humana. REDVET. Revista electrónica de Veterinaria, 8(7), 1-9. | |
dc.relation | Guo, H., Luo, S., Chen, L., Xiao, X., Xi, Q., Wei, W., ... & He, Y. (2010). Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresource technology, 101(22), 8599-8605. | |
dc.relation | Gupta RS, Patel S, Saini N, Chen S. Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. Int J Syst Evol Microbiol 2020; 70:5753-5798. | |
dc.relation | Gupta, V., Trivedi, N., Kumar, M., Reddy, C. R. K., & Jha, B. (2013). Purification and characterization of exo-β-agarase from an endophytic marine bacterium and its catalytic potential in bioconversion of red algal cell wall polysaccharides into galactans. biomass and bioenergy, 49, 290-29 | |
dc.relation | Haygood, M. G., Schmidt, E. W., Davidson, S. K., & Faulkner, D. J. (1999). Microbial symbionts of marine invertebrates: opportunities for microbial biotechnology. Journal of molecular microbiology and biotechnology, 1(1), 33-43. | |
dc.relation | Häder, D. P., & Figueroa, F. L. (1997). Photoecophysiology of marine macroalgae. Photochemistry and Photobiology, 66(1), 1-14. | |
dc.relation | Hehemann J, Boraston A, Czjzek M. (2014). A sweet new wave: structures and mechanism of enzymes that digest polysaccharides from marine algae. Current Opinion in Structural Biology. 28: 77-86. doi: 10.1016/j.sbi.2014.07.009. | |
dc.relation | Hardoim, P. R., Van Overbeek, L. S., Berg, G., Pirttilä, A. M., Compant, S., Campisano, A., ... & Sessitsch, A. (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 79(3), 293-320 | |
dc.relation | Ho, Y. B. (1990). Ulva lactuca as bioindicator of metal contamination in intertidal waters in Hong Kong. Hydrobiologia, 203(1-2), 73-8 | |
dc.relation | Hormaeche E,Edwards PR (1960). A proposed genus Enterobacter. Int. Bull. Bacteriol. Nomencl. Taxon. 10, 71-74. | |
dc.relation | Horta, A., Pinteus, S., Alves, C., Fino, N., Silva, J., Fernandez, S., ... & Pedrosa, R. (2014). Antioxidant and antimicrobial potential of the Bifurcaria bifurcata epiphytic bacteria. Marine drugs, 12(3), 1676-1689. | |
dc.relation | Hoyos Ramos, D. E. (2020). Diversidad de bacterias con capacidad de fijar nitrogeno asociadas a dos especies del género Tillandsia (L.) en bosque seco tropical, corregimiento las palomas–montería. | |
dc.relation | INVEMAR (2016). Plan Estratégico 2007-2009 "Hacia el desarrollo sostenible de nuestros mares". 40 | |
dc.relation | Ishwarya, R., Vaseeharan, B., Kalyani, S., Banumathi, B., Govindarajan, M., Alharbi, N. S., & Benelli, G. (2018). Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity. Journal of Photochemistry and Photobiology B: Biology, 178, 249-258. | |
dc.relation | Ismail, A., Ktari, L., Ahmed, M., Bolhuis, H., Boudabbous, A., Stal, L. J., ... & El Bour, M. (2016). Antimicrobial activities of bacteria associated with the brown alga Padina pavonica. Frontiers in microbiology, 7, 107 | |
dc.relation | Yabuuchi E,Kosako Y,Yano I,Hotta H,Nishiuchi Y (1995). Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. Nov.: Proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. Nov., Ralstonia solanacearum (Smith 1896) comb. Nov. and Ralstonia eutropha (Davis 1969) comb. Nov. Microbiol. Immunol. 39, 897-904. | |
dc.relation | Jiménez del Río, M. Á. (1995). Mecanismos de asimilación de carbono y nitrógeno en algas marinas. Aplicación a la biofiltralción de afluentes de piscifactorias (Doctoral dissertation). | |
dc.relation | Juni E,Heym GA (1986). Psychrobacter immobilis gen. nov., sp. nov.: genospecies composed of gram-negative, aerobic, oxidase-positive coccobacilli. Int. J. Syst. Bacteriol. 36, 388-391. | |
dc.relation | Jose, P. A., Sivakala, K. K., & Jebakumar, S. R. D. (2014). Molecular phylogeny and plant growth promoting traits of endophytic bacteria isolated from roots of seagrass Cymodocea serrulata | |
dc.relation | Kanjanamaneesathian, M., & Meetum, P. (2018). Paenibacillus polymyxa as potential biological control agent isolated from vegetables grown hydroponically in Thailand. Kasem Bundit Engineering Journal, 8, 14-24. | |
dc.relation | Kobayashi, D. Y., & Palumbo, J. D. (2000). Bacterial Endophytes and Their. Microbial endophytes, 2000, 99-233. | |
dc.relation | Korsten, L., De Jager, E. S., De Villiers, E. E., Lourens, A., Kotze, J. M., & Wehner, F. C. (1995). Evaluation of Bacterial Epiphytes Isolated from Avocado Leaf and Fruit Surfaces. Plant Disease, 79(11), 1149. | |
dc.relation | Krimm, U., Abanda-Nkpwatt, D., Schwab, W., & Schreiber, L. (2005). Epiphytic microorganisms on strawberry plants (Fragaria ananassa cv. Elsanta): identification of bacterial isolates and analysis of their interaction with leaf surfaces. FEMS Microbiology Ecology, 53(3), 483-492. | |
dc.relation | Larran, S., Perello, A., Simon, M. R., & Moreno, V. (2002). Isolation and analysis of endophytic microorganisms in wheat (Triticum aestivum L.) leaves. World Journal of Microbiology and Biotechnology, 18(7), 683-686. | |
dc.relation | Letts, E. A., & Richards, E. H. (1911). Report on green seaweeds (and especially Ulva latissima) in relation to the pollution of the waters in which they occur. Royal Commission on Sewage Disposal. 7th report, section II, appendix III., London | |
dc.relation | Laycock, R. A. (1974). The detrital food chain based on seaweeds. I. Bacteria associated with the surface of Laminaria fronds. Marine Biology, 25(3), 223– 231. doi:10.1007/bf00394968 | |
dc.relation | Linnaeus, C. (1753). Species plantarum, exhibentes plantas rite cognitas ad genera relatas cum differentiis specificis, nominibus trivialibus, synonymis selectis, locis natalibus, secundum systema sexuale digestas. Stockholm., available online at https://www.biodiversitylibrary.org/bibliography/669#/summary page(s): 1163. Volume 2. | |
dc.relation | Liu, Y. H., Wei, Y. Y., Mohamad, O. A. A., Salam, N., Zhang, Y. G., Guo, J. W., ... & Li, W. J. (2019). Diversity, community distribution and growth promotion activities of endophytes associated with halophyte Lycium ruthenicum Murr. 3 Biotech, 9(4), 1-12 | |
dc.relation | Loffler FE, Sung QJ, Li J, Tiedje JM. 16S rRNA gene based detection of tetrachloroethene dechlorinating Delsufuromonas and Dehalococcoides species. Applied and Environmental Microbiology, 66: 1369-1374, 2000. | |
dc.relation | Loiret, F. G., Ortega, E., Kleiner, D., Ortega-Rodés, P., Rodes, R., & Dong, Z. (2004). A putative new endophytic nitrogen-fixing bacterium Pantoea sp. from sugarcane. Journal of applied microbiology, 97(3), 504-511. | |
dc.relation | Luna-Acosta, A., Saulnier, D., Pommier, M., Haffner, P., De Decker, S., Renault, T., & Thomas-Guyon, H. (2011). First evidence of a potential antibacterial activity involving a laccase-type enzyme of the phenoloxidase system in Pacific oyster Crassostrea gigas haemocytes. Fish & shellfish immunology, 31(6), 795-800. | |
dc.relation | Macdonell MT (1985). Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst. Appl. Microbiol. 6, 171-182. | |
dc.relation | Malik, S. A. A., Bedoux, G., Maldonado, J. Q. G., Freile-Pelegrín, Y., Robledo, D., & Bourgougnon, N. (2020). Defence on surface: macroalgae and their surface-associated microbiome. In Advances in Botanical Research (Vol. 95, pp. 327-368). Academic Press. | |
dc.relation | Manaia CM,Nogales B,Weiss N,Nunes OC (2004). Gulosibacter molinativorax gen. nov., sp. nov., a molinate-degrading bacterium, and classification of 'Brevibacterium helvolum' DSM 20419 as Pseudoclavibacter helvolus gen. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 54, 783-9. | |
dc.relation | Martín, M., Portetelle, D., Michel, G., Vandenbol, M. (2014). Microorganisms living on macroalgae: Diversity, interactions, and biotechnological applications. Applied Microbiology and Biotechnology. 98(7): 2917–2935. https://doi.org/10.1007/s00253-014-5557-2. | |
dc.relation | Mazure, H. G. F., & Field, J. G. (1980). Density and ecological importance of bacteria on kelp fronds in an upwelling region. Journal of Experimental Marine Biology and Ecology, 43(2), 173–182. doi:10.1016/0022-0981(80)90024-6 | |
dc.relation | Mérour, J. Y. (2004). La mer, source de molécules bioactives. Sciences, 3(3e). | |
dc.relation | Migula W (1894). Über ein neues System der Bakterien. Arb. a. d. bakteriol. Inst. d. techn. Hochschule zu Karlsruhe 1, 235-238. | |
dc.relation | Millas, P., & France, A. (2020). Poblaciones epifitas de Pseudomonas syringae en cerezo. Boletin INIA-Instituto de Investigaciones Agropecuarias. | |
dc.relation | Montalvão, S., Demirel, Z., Devi, P., Lombardi, V., Hongisto, V., Perälä, M., ... & Dalay, M. C. (2016). Large-scale bioprospecting of cyanobacteria, micro-and macroalgae from the Aegean Sea. New biotechnology, 33(3), 399-406 | |
dc.relation | Morand, P., & Briand, X. (1996). Excessive growth of macroalgae: a symptom of environmental disturbance. Botanica marina, 39(1-6), 491-516. | |
dc.relation | Moreira, S. M., Moreira-Santos, M., Guilhermino, L., & Ribeiro, R. (2006). Immobilization of the marine microalga Phaeodactylum tricornutum in alginate for in situ experiments: bead stability and suitability. Enzyme and microbial technology, 38(1-2), 135-141. | |
dc.relation | Nongkhlaw, F. M. W., & Joshi, S. R. (2014). Distribution pattern analysis of epiphytic bacteria on ethnomedicinal plant surfaces: A micrographical and molecular approach. Journal of Microscopy and Ultrastructure, 2(1), 34-40. | |
dc.relation | Ochoa, L. S., Campoverde, M. I., & Santacruz-Reyes, R. A. (2017). Estudio preliminar del extracto de dos plantas medicinales con efecto antibacteriano para uso en acuicultura. AquaTIC, (49), 1-7. | |
dc.relation | Oróstica, M., Calderon, M. S., Boo, S. M., Sandoval, C., & Edding, M. (2017). Nuevo registro de Ulva australis (Ulvaceae, Chlorophyta) en el norte de Chile. Revista de biología marina y oceanografía, 52(3), 621-630. | |
dc.relation | Palanisami, S., Saha, S. K., Lakshmanan, U. (2010). Laccase and polyphenol oxidase activities of marine cyanobacteria: A study with Poly R-478 decolorization. World Journal of Microbiology and Biotechnology. 26(1): 63–69. https://doi.org/10.1007/s11274-009-0143-y. | |
dc.relation | Palleroni NJ,Bradbury JF (1993). Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983. Int. J. Syst. Bacteriol. 43, 606-9. | |
dc.relation | Patel S, Gupta RS. A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: Proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. Int J Syst Evol Microbiol 2020; 70:406-438. | |
dc.relation | Pérez, A., ROJAS, J., & HELSON VALE, M. (2009). Biología y perspectiva de microorganismos endófitos asociados a plantas. Revista Colombiana de Ciencia AnimalRECIA, 286-301. | |
dc.relation | Pérez-Estrella, S., Carrillo-Domínguez, S., & de Quiroga, V. (1996). COMPOSICIÓN QUÍMICA DEL ALGA VERDE Ulva lactuca. Ciencias Marinas, 22(2), 205-213. | |
dc.relation | Pointing S.B., 2001. Feasibility of bioremediation by white-rot fungi. Applied Microbiology and Biotechnology 57: 20-33. | |
dc.relation | PRIYA, R. K., & PADMAKUMAR, K. (2017). Endophytic fungi associated with marine macroalga Sargassum wightii. SEAWEED RESEARCH AND UTILISATION ASSOCIATION, 58. | |
dc.relation | Pruzzo, C., Huq, A., Colwell, R. R., & Donelli, G. (2005). Pathogenic Vibrio species in the marine and estuarine environment. In Oceans and health: pathogens in the marine environment (pp. 217-252). Springer, Boston, MA. | |
dc.relation | Pulido, G. D., & Ruíz, M. D. (2003). Diversity of benthic marine algae of the Colombian Atlantic. Biota colombiana, 4(2), 203-246. | |
dc.relation | Pushpa, L., Govindarajan, S. S., Feng, Q., Jian-Liang, L., & Sahoo, M. K. (2017). Deep Sequencing-Identified Kanamycin-Resistant Paenibacillus sp. Strain KS1 Isolated from Epiphyte Tillandsia usneoides (Spanish Moss) in Central Florida, USA. Microbiology Resource Announcements, 5(5). | |
dc.relation | Quitral, V., Morales, C., Sepúlveda, M., & Schwartz, M. (2012). Propiedades nutritivas y saludables de algas marinas y su potencialidad como ingrediente funcional. Revista chilena de nutrición, 39(4), 196-202. | |
dc.relation | Rao, D., Webb, J. S., Holmström, C., Case, R., Low, A., Steinberg, P., & Kjelleberg, S. (2007). Low densities of epiphytic bacteria from the marine alga Ulva australis inhibit settlement of fouling organisms. Applied and environmental microbiology, 73(24), 7844- 7852. | |
dc.relation | Ryan, R. P., Monchy, S., Cardinale, M., Taghavi, S., Crossman, L., Avison, M. B., ... & Dow, J. M. (2009). The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nature Reviews Microbiology, 7(7), 514-525. | |
dc.relation | Roleda, M. Y., Lage, S., Aluwini, D. F., Rebours, C., Brurberg, M. B., Nitschke, U., & Gentili, F. G. (2020). Chemical profiling of the Arctic sea lettuce Ulva lactuca (Chlorophyta) masscultivated on land under controlled conditions for food applications. Food Chemistry, 341, 127999. | |
dc.relation | Renoux, H. (2020). Ulva lactuca, l’algue verte, un médicament homéopathique en phase avec les questions environnementales. Étude à partir de l’histoire naturelle de l’algue, de sa pathogénésie et de cas cliniques. La Revue d'Homéopathie, 11(3), 103-109 | |
dc.relation | Rybakova, D., Schmuck, M., Wetzlinger, U., Varo-Suarez, A., Murgu, O., Müller, H., & Berg, G. (2016). Kill or cure? The interaction between endophytic Paenibacillus and Serratia strains and the host plant is shaped by plant growth conditions. Plant and soil, 405(1), 65- 79. | |
dc.relation | Rosenbach FJ (1884). Microorganismen bei den Wund-Infections-Krankheiten des Menschen. In ,Edition: , pp. 1-122. Edited by . Wiesbaden: J.F. Bergmann. | |
dc.relation | Rosenblueth, M., & Martínez-Romero, E. (2006). Bacterial endophytes and their interactions with hosts. Molecular plant-microbe interactions, 19(8), 827-837. | |
dc.relation | Ruiz-Toquica, J. S., Comba-González, N. B., & Montoya-Castaño, D. (2020). Two possible candidate enzymes from Ulva lactuca-associated epiphytic bacteria obtained through PCR and functional evaluation. Universitas Scientiarum, 25(2), 247-275 | |
dc.relation | Santamaría, J. Comba, N. Pérez X. (2015). Sección 2 MICROSCOPÍA Y MORFOLOGÍA BACTERIANA. Melo J (Ed.), MICROBIOLOGÍA GENERAL Principios Básicos de Laboratorio (ed en Colombia). UTADEO. | |
dc.relation | Santamaría, J., & Bayman, P. (2005). Fungal epiphytes and endophytes of coffee leaves (Coffea arabica). Microbial ecology, 50(1), 1-8. | |
dc.relation | Samboni Ruiz, N. E., Carvajal Escobar, Y., & Escobar, J. C. (2007). Revisión de parámetros fisicoquímicos como indicadores de calidad y contaminación del agua. Ingeniería e investigación. | |
dc.relation | Sáenz-Reyes, J. A., Ríos-Reyes, C. A., & Castellanos-Alarcón, O. M. (2017). Itinerario geológico de la franja costera entre el Aeropuerto Internacional Simón Bolívar y la Bahía de Taganga, Provincia Geotectónica de Santa Marta. Boletín de Ciencias de la Tierra, (42), 5- 24. | |
dc.relation | Sarr, P. S., Yamakawa, T., Asatsuma, S., Fujimoto, S., & Sakai, M. (2010). Investigation of endophytic and symbiotic features of Ralstonia sp. TSC1 isolated from cowpea nodules. African Journal of Microbiology Research, 4(19), 1959-1963. | |
dc.relation | Segers P,Vancanneyt M,Pot B,Torck U,Hoste B,Dewettinck D,Falsen E,Kersters K,De Vos P (1994). Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Büsing, Döll, and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov., respectively. Int. J. Syst. Bacteriol. 44, 499-510 | |
dc.relation | Shurigin, V., Egamberdieva, D., Li, L., Davranov, K., Panosyan, H., Birkeland, N. K., ... & Bellingrath-Kimura, S. D. (2020). Endophytic bacteria associated with halophyte Seidlitzia rosmarinus Ehrenb. ex Boiss. from saline soil of Uzbekistan and their plant beneficial traits. Journal of Arid Land, 12(5), 730-740. | |
dc.relation | Silvério, S. C., Moreira, S., Milagres, A. M., Macedo, E. A., Teixeira, J. A., & Mussatto, S. I. (2013). Laccase production by free and immobilized mycelia of Peniophora cinerea and Trametes versicolor: a comparative study. Bioprocess and biosystems engineering, 36(3), 365-373. | |
dc.relation | Singh, R. P., Reddy, C. R. (2014). Seaweed-microbial interactions: Key functions of seaweed-associated bacteria. FEMS Microbiology Ecology. 88(2): 213–230. https://doi.org/10.1111/1574-6941.12297. | |
dc.relation | Singh, R. P., & Reddy, C. R. K. (2016). Unraveling the functions of the macroalgal microbiome. Frontiers in microbiology, 6, 1488 | |
dc.relation | Strobel, G., & Daisy, B. (2003). Bioprospecting for microbial endophytes and their natural products. Microbiology and molecular biology reviews, 67(4), 491-502. | |
dc.relation | Sugrani, A., Ahmad, A., Djide, M. N., & Natsir, H. (2019, October). Toxicological evaluation and antibacterial activity of crude protein extract from endophytic bacteria associated with Algae Eucheuma spinosum. In Journal of Physics: Conference Series (Vol. 1341, No. 3, p. 032006). IOP Publishing | |
dc.relation | Tait, K., Joint, I., Daykin, M., Milton, D. L., Williams, P., & Cámara, M. (2005). Disruption of quorum sensing in seawater abolishes attraction of zoospores of the green alga Ulva to bacterial biofilms. Environmental Microbiology, 7(2), 229-240. | |
dc.relation | Thatoi, H., Behera, B. C., Mishra, R. R., & Dutta, S. K. (2013). Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: a review. Annals of Microbiology, 63(1), 1-19. | |
dc.relation | Torres-Duarte C., R. Roman, R. Tinoco, R. Vazquez-Duhalt, 2009. Halogenated pesticide transformation by a laccase-mediator system. Chemosphere 77: 687-692. | |
dc.relation | Trincone, A. (2011). Marine biocatalysts: Enzymatic features and applications. Marine Drugs. 9(4): 478–499. https://doi.org/10.3390/md9040478. | |
dc.relation | Trivedi, N., Gupta, V., Kumar, M., Kumari, P., Reddy, C. R. K., & Jha, B. (2011). An alkalihalotolerant cellulase from Bacillus flexus isolated from green seaweed Ulva lactuca. Carbohydrate polymers, 83(2), 891-897. | |
dc.relation | Ulrich, K., Stauber, T., & Ewald, D. (2008). Paenibacillus—a predominant endophytic bacterium colonising tissue cultures of woody plants. Plant Cell, Tissue and Organ Culture, 93(3), 347-351. | |
dc.relation | Uzair, B., Menaa, F., Khan, B. A., Mohammad, F. V., Ahmad, V. U., Djeribi, R., & Menaa, B. (2018). Isolation, purification, structural elucidation and antimicrobial activities of kocumarin, a novel antibiotic isolated from actinobacterium Kocuria marina CMG S2 associated with the brown seaweed Pelvetia canaliculata. Microbiological research, 206, 186-197. | |
dc.relation | Vargas-Flores, T., & Kuno-Vargas, A. (2015). Morfología bacteriana. | |
dc.relation | Vides, M., D. Alonso, E. Castro y N. Bolaños (Ed.). 2016. Biodiversidad del mar de los siete colores. Instituto de Investigaciones Marinas y Costeras – INVEMAR y Corporación para el Desarrollo Sostenible del Archipiélago de San Andrés, Providencia y Santa Catalina - CORALINA. Serie de Publicaciones Generales del INVEMAR No. 84, Santa Marta – Colombia. 228 p. | |
dc.relation | Vreeland RH,Litchfield CD,Martin EL,Elliot E (1980). Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int. J. Syst. Bacteriol. 30, 485-495. | |
dc.relation | Wang, G., Shuai, L., Li, Y., Lin, W., Zhao, X., & Duan, D. (2008). Phylogenetic analysis of epiphytic marine bacteria on Hole-Rotten diseased sporophytes of Laminaria japonica. Journal of applied phycology, 20(4), 403-409. | |
dc.relation | Wani, Z. A., Ashraf, N., Mohiuddin, T., & Riyaz-Ul-Hassan, S. (2015). Plant-endophyte symbiosis, an ecological perspective. Applied microbiology and biotechnology, 99(7), 2955- 2965 | |
dc.relation | War Nongkhlaw, F. M., & Joshi, S. R. (2014). Epiphytic and endophytic bacteria that promote growth of ethnomedicinal plants in the subtropical forests of Meghalaya, India. Revista de biologia tropical, 62(4), 1295-1308 | |
dc.relation | Wendy Guiry in Guiry, M.D. & Guiry, G.M. 2020. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; searched on 01 October 2020. | |
dc.relation | Verma, P., Yadav, A. N., Khannam, K. S., Panjiar, N., Kumar, S., Saxena, A. K., & Suman, A. (2015). Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Annals of microbiology, 65(4), 1885-1899. | |
dc.relation | Wichard T., Charrier, B., Mineur, F., Bothwell, J. H., Clerck, O. D., &Cpates, J. C. (2015). The green seaweed Ulva: a model system to study morphogenesis. Frontiers in plant science, 6, 72 | |
dc.relation | Wichard, T., & Beemelmanns, C. (2018). Role of chemical mediators in aquatic interactions across the prokaryote–eukaryote boundary. Journal of chemical ecology, 44(11), 1008- 1021. | |
dc.relation | Wingender, J., & Flemming, H. C. (2011). Biofilms in drinking water and their role as reservoir for pathogens. International journal of hygiene and environmental health, 214(6), 417-423. | |
dc.relation | Xiong, Y., Yang, R., Sun, X., Yang, H., & Chen, H. (2018). Effect of the epiphytic bacterium Bacillus sp. WPySW2 on the metabolism of Pyropia haitanensis. Journal of applied phycology, 30(2), 1225-1237. | |
dc.relation | Zhang, J. H., Huo, Y. Z., Zhang, Z. L., Yu, K. F., He, Q., Zhang, L. H., ... & He, P. M. (2013). Variations of morphology and photosynthetic performances of Ulva prolifera during the whole green tide blooming process in the Yellow Sea. Marine environmental research, 92, 35-42. | |
dc.relation | Zhang, J., Wang, P., Tian, H., Jiang, H., Wang, Y., & Yan, C. (2018). Identification of interior salt-tolerant bacteria from ice plant Mesembryanthemum crystallinum and evaluation of their promoting effects. Symbiosis, 76(3), 243-252. | |
dc.relation | Zhang, J., Wang, P., Tian, H., Tao, Z., & Guo, T. (2020). Transcriptome analysis of Ice plant growth-promoting endophytic bacterium Halomonas sp. strain MC1 to identify the genes involved in salt tolerance. Microorganisms, 8(1), 88. | |
dc.relation | Zhang, R., Chang, L., Luyang, X., Zhang, X., Han, Q., Li, N., ... & Gaoge, W. (2020). Diversity of the epiphytic bacterial communities associated with commercially cultivated healthy and diseased Saccharina japonica during the harvest season. Journal of Applied Phycology, 32(3), 207-2080. | |
dc.relation | del Rosario Rodicio, M., & del Carmen Mendoza, M. (2004). Identificación bacteriana mediante secuenciación del ARNr 16S: fundamento, metodología y aplicaciones en microbiología clínica. Enfermedades infecciosas y microbiología clínica, 22(4), 238-245. | |
dc.relation | Martínez, H. F., Chávez-Arteaga, K., Guato-Molina, J., Peñafiel-Jaramillo, M., & MestanzaUquillas, C. (2018). Bacterias fluorescentes productoras de metabolitos antagónicos de cultivares nativos de Musa sp. y su diversidad filogenética al gen ARNr 16S. Ciencia y Tecnología, 11(2), 17-29. | |
dc.rights | EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma. PARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe. EL AUTOR, autoriza a LA UNIVERSIDAD DE BOGOTA JORGE TADEO LOZANO, para que en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre la materia, utilice y use la obra objeto de la presente autorización. POLITICA DE TRATAMIENTO DE DATOS PERSONALES. Declaro que autorizo previa y de forma informada el tratamiento de mis datos personales por parte de LA UNIVERSIDAD DE BOGOTÁ JORGE TADEO LOZANO para fines académicos y en aplicación de convenios con terceros o servicios conexos con actividades propias de la academia, con estricto cumplimiento de los principios de ley. Para el correcto ejercicio de mi derecho de habeas data cuento con la cuenta de correo protecciondatos@utadeo.edu.co, donde previa identificación podré solicitar la consulta, corrección y supresión de mis datos | |
dc.rights | info:eu-repo/semantics/embargoedAccess | |
dc.rights | Acceso restringido | |
dc.source | Universidad de Bogotá Jorge Tadeo Lozano | |
dc.source | Expeditio Repositorio Institucional UJTL | |
dc.subject | Microorganismos endófitos | |
dc.subject | Microorganismo epífitos | |
dc.subject | Diversidad microbiana | |
dc.subject | Macroalga | |
dc.subject | Ulva lactuca | |
dc.subject | Santa Marta (Colombia) | |
dc.title | Aislamiento de bacterias Epífitas y Endófitas de macroalgas de la especie Ulva Lactuca situadas en la localidad de la punta de la loma (Santa Marta) | |