es | en | pt | fr
    • Presentación
    • Países
    • Instituciones
    • Participa
        JavaScript is disabled for your browser. Some features of this site may not work without it.
        Ver ítem 
        •   Inicio
        • Colombia
        • Universidades
        • Universidad Jorge Tadeo Lozano (Colombia)
        • Ver ítem
        •   Inicio
        • Colombia
        • Universidades
        • Universidad Jorge Tadeo Lozano (Colombia)
        • Ver ítem

        Accounting for correlational structures in stochastic comparative life cycle assessments through copula modeling

        Registro en:
        0948-3349
        https://link.springer.com/article/10.1007/s11367-020-01859-w
        http://hdl.handle.net/20.500.12010/28016
        http://expeditiorepositorio.utadeo.edu.co
        http://repositorioslatinoamericanos.uchile.cl/handle/2250/3493968
        Autor
        Gil, Rodrigo
        Bojacá, Carlos Ricardo
        Schrevens, Eddie
        Institución
        • Universidad Jorge Tadeo Lozano (Colombia)
        Resumen
        The presence of correlations between input parameters in a life cycle assessment (LCA) is a well-known issue. On top of that, the univariate distribution of environmental indicators, in most cases, does not follow the Gaussian nor the lognormal distribution. In this article, we introduce the copula modeling to build joint multivariate sampling spaces, irrespective of the marginal distributions of the environmental indicators, for LCA uncertainty analyses. To exemplify the proposed method, we integrate the copula modeling to the stochastic multiattribute analysis (SMAA) method to perform the normalization and weighting steps in a comparative agricultural LCA. Methods An attributional LCA was performed to compare the environmental impact of two tomato production systems (GH, greenhouse; OF, open field) with different intensification levels. To choose the best environmental performance system, we implemented the outranking procedure of the SMAA method but based on the true multivariate distribution of the environmental indicators. As required by the SMAA method, initially, we fitted skewed multivariate distributions among the environmental indicators but accounting for their correlation structure through the copula method. Afterwards, the standard SMAA procedure was followed, leading to the calculation of overall scores indicating the environmental performance of the systems under comparison. Results and discussion After individual LCAs were performed for each grower, the variability observed in the primary data was propagated to the environmental indicators. The marginal distributions of the environmental indicators showed a right skewed trend which were fitted to gamma, log-normal, or Weibull distributions as applicable. The application of the copula method for the environmental indicators of the GH and OF systems resulted in D-vine models consisting of 46 and 45 bivariate copulas requiring 47 parameters each, respectively. Sampling the multivariate space configured by the D-vine models and integrating it with the SMAA method indicated that the OF system is more likely to have a better environmental performance with a rank acceptability index (RAI) of 57.6% while the GH system yielded a lower RAI (42.4%). Conclusions We applied a stochastic unbiased approach to compare the environmental performance of agricultural systems but recognizing the correlation structure of the indicators. The copula method introduced here can be applied to uncertainty or multicriteria decision analysis where correlation needs to be accounted for. Joining the copula and the SMAA methods to produce an unbiased preference indicator allows to evaluate scenarios in a realistic way, producing results that can easily be communicated.
        Materias
        Accounting for correlational structures
        Copula modeling

        Mostrar el registro completo del ítem


        Red de Repositorios Latinoamericanos
        + de 8.000.000 publicaciones disponibles
        500 instituciones participantes
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Ingreso Administradores
        Colecciones destacadas
        • Tesis latinoamericanas
        • Tesis argentinas
        • Tesis chilenas
        • Tesis peruanas
        Nuevas incorporaciones
        • Argentina
        • Brasil
        • Colombia
        • México
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Red de Repositorios Latinoamericanos | 2006-2018
         

        EXPLORAR POR

        Instituciones
        Fecha2011 - 20202001 - 20101951 - 20001901 - 19501800 - 1900

        Explorar en Red de Repositorios

        Países >
        Tipo de documento >
        Fecha de publicación >
        Instituciones >

        Red de Repositorios Latinoamericanos
        + de 8.000.000 publicaciones disponibles
        500 instituciones participantes
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Ingreso Administradores
        Colecciones destacadas
        • Tesis latinoamericanas
        • Tesis argentinas
        • Tesis chilenas
        • Tesis peruanas
        Nuevas incorporaciones
        • Argentina
        • Brasil
        • Colombia
        • México
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Red de Repositorios Latinoamericanos | 2006-2018