dc.contributor | Leongómez Peña, Juan David | |
dc.creator | Moreno Buitrago, Natalia Elízabeth | |
dc.creator | Pérez Ariza, Juan Felipe | |
dc.date.accessioned | 2019-09-23T15:56:31Z | |
dc.date.accessioned | 2022-09-23T15:50:58Z | |
dc.date.available | 2019-09-23T15:56:31Z | |
dc.date.available | 2022-09-23T15:50:58Z | |
dc.date.created | 2019-09-23T15:56:31Z | |
dc.date.issued | 2019 | |
dc.identifier | http://hdl.handle.net/20.500.12209/10443 | |
dc.identifier | instname:Universidad Pedagógica Nacional | |
dc.identifier | instname:Universidad Pedagógica Nacional | |
dc.identifier | reponame: Repositorio Institucional UPN | |
dc.identifier | repourl: http://repositorio.pedagogica.edu.co/ | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3486689 | |
dc.description.abstract | Los maestros de música generalmente afirman que, según su experiencia, la música beneficia de diversas maneras a los estudiantes. En esta investigación evaluamos la afirmación que apunta a que la música lleva a los estudiantes a trabajar mejor en equipo. 15 grupos de 5 personas, cada uno conformado por hombres y mujeres desconocidos entre sí, y de edades entre los 18 y 28 años de diferentes universidades de Bogotá, fueron asignados a tres condiciones: rítmica, ritmomelódica y control. Cada grupo debía componer o improvisar algo que los representara grupalmente: En la condición rítmica, los participantes debían componer o improvisar un ritmo entre los cinco e interpretarlo; en la condición ritmomelódica, los participantes debían componer una canción o cantar alguna existente que los representara; y finalmente, en el control, los participantes debían crear una frase o un slogan que no tuviera ningún tipo de rasgo musical. Acto seguido, cada grupo debía trabajar en equipo para completar dos actividades. En primer lugar, debían desenredar cinco cuerdas anudadas de manera estándar siguiendo unas reglas específicas. Luego de desenredarlas, debían armar un rompecabezas entre los cinco, para lo cual, dos integrantes del grupo debían vendarse los ojos y manipular las fichas,
mientras que los tres restantes daban las instrucciones en un orden específico. El tiempo de ejecución era cronometrado desde que empezaban a desenredar las cuerdas hasta que ponían la última ficha del rompecabezas. Los datos fueron analizados realizando un análisis de covarianza, comparando el promedio del tiempo de ejecución de cada condición y controlando tres covariables: I) el promedio grupal del resultado de la prueba de musicalidad y el promedio grupal de los índices psicométricos de II) dominancia y III) prestigio. Los resultados no permiten inferir con suficiente certeza una relación entre las condiciones experimentales y el tiempo de ejecución de las pruebas de trabajo grupal (p = 0.797). Las implicaciones de estos resultados fueron analizados a la luz de una revisión bibliográfica en la que indagamos sobre las diferentes hipótesis que le aportan a la música un valor evolutivo. | |
dc.language | spa | |
dc.publisher | Universidad Pedagógica Nacional | |
dc.publisher | Licenciatura en Música | |
dc.publisher | Facultad de Bellas Artes | |
dc.relation | Agustus, J. L., Mahoney, C. J., Downey, L. E., Omar, R., Cohen, M., White, M. J., …
Warren, J. D. (2015). Functional MRI of music emotion processing in frontotemporal
dementia. Annals of the New York Academy of Sciences, 1337(1), 232–240.
https://doi.org/10.1111/nyas.12620 | |
dc.relation | Aiello, L. C., & Dunbar, R. I. M. (1993). Neocortex Size, Group Size, and the Evolution of
Language. Current Anthropology, 34(2), 184–193. https://doi.org/10.2307/2743982 | |
dc.relation | Albert, M. L., Sparks, R. W., & Helm, N. A. (1973). Melodic intonation therapy for
aphasia. Archives of Neurology, 29(2), 130–131. | |
dc.relation | Altenmüller, E., & Furuya, S. (2017). Apollos Gift and Curse: Making Music as a model
for Adaptive and Maladaptive Plasticity. E-Neuroforum, 23(2).
https://doi.org/10.1515/nf-2016-A054 | |
dc.relation | Amaducci, L., Grassi, E., & Boller, F. (2002). Maurice Ravel and right-hemisphere
musical creativity: Influence of disease on his last musical works? European Journal
of Neurology, 9(1), 75–82. https://doi.org/10.1046/j.1468-1331.2002.00351.x | |
dc.relation | Aslan, U. (2017). Negotiating biological and cultural features of music: Towards the field
of biomusicology. Rupkatha Journal on Interdisciplinary Studies in Humanities, 9(1),
2–10. https://doi.org/10.21659/rupkatha.v9n1.02 | |
dc.relation | Atzil, S., Hendler, T., & Feldman, R. (2011). Specifying the neurobiological basis of
human attachment: Brain, hormones, and behavior in synchronous and intrusive
mothers. Neuropsychopharmacology, 36(13), 2603–2615.
https://doi.org/10.1038/npp.2011.172 | |
dc.relation | Au, W. W. L., Pack, A. A., Lammers, M. O., Herman, L. M., Deakos, M. H., & Andrews,
K. (2006). Acoustic properties of humpback whale songs. The Journal of the
Acoustical Society of America, 120(2), 1103–1110.
https://doi.org/10.1121/1.2211547 | |
dc.relation | Axelrod, R., & Dion, D. (1988). The further evolution of cooperation. Science, 242(4884),
1385–1390. https://doi.org/10.1126/science.242.4884.1385 | |
dc.relation | Bannan, N. (2017). Darwin, music and evolution: New insights from family
correspondence on The Descent of Man. Musicae Scientiae, 21(1), 3–25.
https://doi.org/10.1177/1029864916631794 | |
dc.relation | Baumgartner, T., Lutz, K., Schmidt, C. F., & Jäncke, L. (2006). The emotional power of
music: How music enhances the feeling of affective pictures. Brain Research,
1075(1), 151–164. https://doi.org/10.1016/j.brainres.2005.12.065 | |
dc.relation | Behague, G., & Seeger, A. (2006). Why Suya Sing. A Musical Anthropology of an
Amazonian People. Latin American Music Review / Revista de Música
Latinoamericana, 9(2), 260. https://doi.org/10.2307/780298 | |
dc.relation | Bellinger, D., Altenmüller, E., & Volkmann, J. (2017). Perception of Time in Music in
Patients with Parkinson’s Disease–The Processing of Musical Syntax Compensates
for Rhythmic Deficits. Frontiers in Neuroscience, 11, 68.
https://doi.org/10.3389/fnins.2017.00068 | |
dc.relation | Bengtsson, S. L., Ullén, F., Henrik Ehrsson, H., Hashimoto, T., Kito, T., Naito, E., …
Sadato, N. (2009). Listening to rhythms activates motor and premotor cortices.
Cortex, 45(1), 62–71. https://doi.org/10.1016/j.cortex.2008.07.002 | |
dc.relation | Benton, A. L. (1977). The Amusias. Music and the Brain, 378–397.
https://doi.org/10.1016/B978-0-433-06703-0.50029-2 | |
dc.relation | Berwick, R. C., Beckers, G. J. L., Okanoya, K., & Bolhuis, J. J. (2012). A bird’s eye view
of human language evolution. Frontiers in Evolutionary Neuroscience, 4, 5.
https://doi.org/10.3389/fnevo.2012.00005 | |
dc.relation | Blood, A. J., & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate
with activity in brain regions implicated in reward and emotion. Proceedings of the
National Academy of Sciences, 98(20), 11818–11823. | |
dc.relation | Boughman, J. W., & Moss, C. F. (2003). Social Sounds: Vocal Learning and
Development of Mammal and Bird Calls. In Acoustic Communication (pp. 138–224).
https://doi.org/10.1007/0-387-22762-8_4 | |
dc.relation | Brainsky, Simón and Guzmán Cervantes, Eugenia and Matallana, Diana and Montaña,
Clemencia and Montañés, Patricia and Morales, Hernando and Moreno Cardozo,
Belén del Rocío and Morillo, Anibal and Pardo, Rodrigo and Rojas, Alejandro and
Ruiz, E. (2010). Cerebro y música. In Cerebro, Arte y Creatividad.
https://doi.org/10.1196 | |
dc.relation | Brandily, M. (2004). Dire ou chanter? L’exemple du Tibesti (Tchad). L’Homme. Revue
Française d’anthropologie, (171–172), 303–311.
https://doi.org/10.4000/lhomme.24924 | |
dc.relation | Brandler, S., & Rammsayer, T. H. (2003). Differences in mental abilities between
musicians and non-musicians. Psychology of Music, 31(2), 123–138.
https://doi.org/10.1177/0305735603031002290 | |
dc.relation | Brown, S., & Jordania, J. (2013). Universals in the world’s musics. Psychology of Music,
41(2), 229–248. https://doi.org/10.1177/0305735611425896 | |
dc.relation | Brown, S., Martinez, M. J., & Parsons, L. M. (2004). Passive music listening
spontaneously engages limbic and paralimbic systems. Neuroreport, 15(13), 2033–
2037. | |
dc.relation | Brufal A, J. D. (2013). Los principales métodos activos de educación musical en
primaria. In Arseduca. Retrieved from
https://dialnet.unirioja.es/servlet/articulo?codigo=4339750 | |
dc.relation | Brust, J. C. (2001). Music and the neurologist. A historical perspective. Annals of the
New York Academy of Sciences, 930, 143–152. | |
dc.relation | Buckner, M., & Margaret. (2004). Ce que nous dit la cloche manjako. L’Homme. Revue
Française d’anthropologie, (171–172), 219–230.
https://doi.org/10.4000/lhomme.24896 | |
dc.relation | Cacioppo, J. T., Cacioppo, S., Capitanio, J. P., & Cole, S. W. (2015). The
Neuroendocrinology of Social Isolation. In Annual Review of Psychology (Vol. 66).
https://doi.org/10.1146/annurev-psych-010814-015240 | |
dc.relation | Callan, D. E., Tsytsarev, V., Hanakawa, T., Callan, A. M., Katsuhara, M., Fukuyama, H.,
& Turner, R. (2006). Song and speech: Brain regions involved with perception and
covert production. NeuroImage, 31(3), 1327–1342.
https://doi.org/10.1016/j.neuroimage.2006.01.036 | |
dc.relation | Carson, S. H., Peterson, J. B., & Higgins, D. M. (2005). Reliability, validity, and factor
structure of the creative achievement questionnaire. Creativity Research Journal,
17(1), 37–50. https://doi.org/10.1207/s15326934crj1701_4 | |
dc.relation | Casudan, E. (1995). Hormones, sex, and status in women. Hormones and Behavior,
29(3), 354–366. https://doi.org/10.1006/hbeh.1995.1025 | |
dc.relation | Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008). Listening to Musical Rhythms
Recruits Motor Regions of the Brain. Cerebral Cortex, 18(12), 2844–2854.
https://doi.org/10.1093/cercor/bhn042 | |
dc.relation | Chen, J. L., Zatorre, R. J., & Penhune, V. B. (2006). Interactions between auditory and
dorsal premotor cortex during synchronization to musical rhythms. NeuroImage,
32(4), 1771–1781. https://doi.org/10.1016/j.neuroimage.2006.04.207 | |
dc.relation | Cheng, J. T., Tracy, J. L., & Henrich, J. (2010). Pride, personality, and the evolutionary
foundations of human social status. Evolution and Human Behavior, 31(5), 334–
347. https://doi.org/10.1016/j.evolhumbehav.2010.02.004 | |
dc.relation | Chobert, J., & Besson, M. (2013). Musical expertise and second language learning.
Brain Sciences, Vol. 3, pp. 923–940. https://doi.org/10.3390/brainsci3020923 | |
dc.relation | Cirelli, L. K., Einarson, K. M., & Trainor, L. J. (2014). Interpersonal synchrony increases
prosocial behavior in infants. Developmental Science, 17(6), 1003–1011. Retrieved
from http://www.ncbi.nlm.nih.gov/pubmed/25513669 | |
dc.relation | Clark, C. W., & Clapham, P. J. (2004). Acoustic monitoring on a humpback whale
(Megaptera novaeangliae) feeding ground shows continual singing into late spring.
Proceedings of the Royal Society B: Biological Sciences, 271(1543), 1051–1057.
https://doi.org/10.1098/rspb.2004.2699 | |
dc.relation | Clarke, E., DeNora, T., & Vuoskoski, J. (2015). Music, empathy and cultural
understanding. Physics of Life Reviews, 15, 61–88.
https://doi.org/10.1016/j.plrev.2015.09.001 | |
dc.relation | Clayton, M. (2012). What is Entrainment? Definition and applications in musical
research. Empirical Musicology Review, 7(1–2), 49–56.
https://doi.org/10.18061/1811/52979 | |
dc.relation | Clayton, M., Sager, R., & Udo, W. (2005). In time with the music : the concept of
entrainment and its signicance for ethnomusicology. In European meetings in
ethnomusicology (Vol. 11, pp. 1–82). Retrieved from
http://dro.dur.ac.uk/8713/1/8713.pdf | |
dc.relation | Conard, N. J., Malina, M., & Münzel, S. C. (2009). New flutes document the earliest
musical tradition in southwestern Germany. Nature, 460(7256), 737–740.
https://doi.org/10.1038/nature08169 | |
dc.relation | Črnčec, R., Wilson, S. J., & Prior, M. (2006). The cognitive and academic benefits of
music to children: Facts and fiction. Educational Psychology, 26(4), 579–594.
https://doi.org/10.1080/01443410500342542 | |
dc.relation | Cross, I. (2001). Music, cognition, culture, and evolution. Annals of the New York
Academy of Sciences, 930, 28–42. | |
dc.relation | Cross, I. (2016). The Nature of Music and Its Evolution The Theory of Evolution in
85
Musicological. In S. Hallam, I. Cross, & M. Thaut (Eds.), Oxford Handbooks Online.
(pp. 1–20). https://doi.org/10.1093/oxfordhb/9780198722946.013.5 | |
dc.relation | Cross, I., & Morley, I. (2008). The evolution of music: theories, definitions and the nature
of the evidence. In Communicative musicality: Exploring the basis of human
companionship (pp. 61–82). Retrieved from
http://www.mus.cam.ac.uk/~ic108/PDF/CM_CM08.pdf | |
dc.relation | Crowley, D. J., & Seeger, A. (2006). Nature and Society in Central Brazil: The Suya
Indians of Mato Grosso. Ethnomusicology, 27(3), 539.
https://doi.org/10.2307/850658 | |
dc.relation | Dalla Bella, S. (2016). Music and Brain Plasticity. In S. Hallam, I. Cross, & M. Thaut
(Eds.), The Oxford Handbook of Music Psychology (2nd ed., pp. 325–342).
https://doi.org/10.1093/oxfordhb/9780198722946.013.23 | |
dc.relation | Dalla Bella, S., Deutsch, D., Giguère, J.-F., Peretz, I., & Deutsch, D. (2007). Singing
proficiency in the general population. The Journal of the Acoustical Society of
America, 121(2), 1182–1189. https://doi.org/10.1121/1.2427111 | |
dc.relation | Darwin, C. (1871). The descent of man, and Selection in relation to sex, Vol 1.
https://doi.org/10.1037/12293-000 | |
dc.relation | Delsing, M. J. M. H., Ter Bogt, T. F. M., Engels, R. C. M. E., & Meeus, W. H. J. (2008).
Adolescents’ music preferences and personality characteristics. European Journal
of Personality, 22(2), 109–130. https://doi.org/10.1002/per.665 | |
dc.relation | Depue, R. A., & Morrone-Strupinsky, J. V. (2005). A neurobehavioral model of affiliative
bonding: Implications for conceptualizing a human trait of affiliation. Behavioral and
Brain Sciences, Vol. 28, pp. 313–350. https://doi.org/10.1017/S0140525X05000063 | |
dc.relation | Di Pietro, M., Laganaro, M., Leemann, B., & Schnider, A. (2004). Receptive amusia:
temporal auditory processing deficit in a professional musician following a left
temporo-parietal lesion. Neuropsychologia, 42(7), 868–877. | |
dc.relation | Dissanayake, E. (2009). Root, leaf, blossom, or bole: Concerning the origin and adaptive
function of music. In S. Malloch & C. Trevarten (Eds.), Communicative musicality:
Exploring the basis of human companionship (pp. 17–30). Oxford University Press. | |
dc.relation | Douglas, K. M., & Bilkey, D. K. (2007). Amusia is associated with deficits in spatial
processing. Nature Neuroscience, 10(7), 915–921. https://doi.org/10.1038/nn1925 | |
dc.relation | Drake, C., & El Heni, J. Ben. (2003). Synchronizing with Music: Intercultural Differences.
Annals of the New York Academy of Sciences, 999(1), 429–437.
https://doi.org/10.1196/annals.1284.053 | |
dc.relation | Dufour, V., Pasquaretta, C., Gayet, P., & Sterck, E. H. M. (2017). The extraordinary
nature of Barney’s drumming: A complementary study of ordinary noise making in
chimpanzees. Frontiers in Neuroscience, 11, 2.
https://doi.org/10.3389/fnins.2017.00002 | |
dc.relation | Dunbar, R. I. M. (1991). Functional Significance of Social Grooming in Primates. Folia
Primatologica, 57(3), 121–131. https://doi.org/10.1159/000156574 | |
dc.relation | Dunbar, R. I. M. (2012). On the Evolutionary Function of Song and Dance. In Music,
Language, and Human Evolution (pp. 201–214).
https://doi.org/10.1093/acprof:osobl/9780199227341.003.0008 | |
dc.relation | Dunbar, R. I. M. (2017). Group size, vocal grooming and the origins of language.
Psychonomic Bulletin and Review, 24(1), 209–212. https://doi.org/10.3758/s13423-
016-1122-6 | |
dc.relation | Dunbar, R. I. M., Kaskatis, K., MacDonald, I., & Barra, V. (2012). Performance of music
elevates pain threshold and positive affect: Implications for the evolutionary function
of music. Evolutionary Psychology, 10(4), 688–702.
https://doi.org/10.1177/147470491201000403 | |
dc.relation | Falk, D. (2008). Prelinguistic evolution in hominin mothers and babies: For cryin’ out
loud! Behavioral and Brain Sciences, 27(4), 461–462.
https://doi.org/10.1017/s0140525x04250105 | |
dc.relation | Falk, J. L. (1958). The grooming behavior of the chimpanzee as a reinforcer. Journal of
the Experimental Analysis of Behavior, 1(1), 83–85.
https://doi.org/10.1901/jeab.1958.1-83 | |
dc.relation | Fancourt, D., & Perkins, R. (2017). Associations between singing to babies and
symptoms of postnatal depression, wellbeing, self-esteem and mother-infant bond.
Public Health, 145, 149–152. https://doi.org/10.1016/j.puhe.2017.01.016 | |
dc.relation | Feldman, R. (2012a). Bio-behavioral Synchrony: A Model for Integrating Biological and
Microsocial Behavioral Processes in the Study of Parenting. Parenting, 12(2–3),
154–164. https://doi.org/10.1080/15295192.2012.683342 | |
dc.relation | Feldman, R. (2012b). Oxytocin and social affiliation in humans. Hormones and Behavior,
Vol. 61, pp. 380–391. https://doi.org/10.1016/j.yhbeh.2012.01.008 | |
dc.relation | Feldman, R. (2016). The neurobiology of mammalian parenting and the biosocial context
of human caregiving. Hormones and Behavior, 77, 3–17.
https://doi.org/10.1016/j.yhbeh.2015.10.001 | |
dc.relation | Feldman, R. (2017). The Neurobiology of Human Attachments. Trends in Cognitive
Sciences, Vol. 21, pp. 80–99. https://doi.org/10.1016/j.tics.2016.11.007 | |
dc.relation | Fernald, A., & Kuhl, P. (1987). Acoustic Determinants of Infan | |
dc.relation | Fernald, A., & Kuhl, P. (1987). Acoustic Determinants of Infant Preference for Motherese
Speech. In Infant behavior and Development (Vol. 10). | |
dc.relation | Field, A., & Hole, G. (2002). How to design and report experiments. Sage. | |
dc.relation | Fitch, W. T. (2005). The evolution of music in comparative perspective. Annals of the
New York Academy of Sciences, 1060(1), 29–49.
https://doi.org/10.1196/annals.1360.004 | |
dc.relation | Fitch, W. T. (2006). The biology and evolution of music: A comparative perspective.
Cognition, 100(1), 173–215. https://doi.org/10.1016/j.cognition.2005.11.009 | |
dc.relation | Fitch, W. T. (2013). Rhythmic cognition in humans and animals: distinguishing meter
and pulse perception. Frontiers in Systems Neuroscience, 7, 68.
https://doi.org/10.3389/fnsys.2013.00068 | |
dc.relation | Fitch, W. T. (2015). Four principles of bio-musicology. Philosophical Transactions of the
Royal Society B: Biological Sciences, 370(1664), 20140091.
https://doi.org/10.1098/rstb.2014.0091 | |
dc.relation | Fodor, J. A. (1983). The modularity of mind : an essay on faculty psychology. MIT Press | |
dc.relation | Fodor, J. A. (1985). Précis of The Modularity of Mind. Behavioral and Brain Sciences,
8(1), 1–5. https://doi.org/10.1017/S0140525X0001921X | |
dc.relation | Formann, W., & Piswanger, J. (1979). Wiener Matrizen Test. Ein Rasch-skalieter
sprachfreier Intelligenztest. Weinheim: Beltz Test,. | |
dc.relation | Formann, W., & Piswanger, J. (1979). Wiener Matrizen Test. Ein Rasch-skalieter
sprachfreier Intelligenztest. Weinheim: Beltz Test,. | |
dc.relation | Foxton, J. M., Nandy, R. K., & Griffiths, T. D. (2006). Rhythm deficits in ‘tone deafness.’
Brain and Cognition, 62(1), 24–29. https://doi.org/10.1016/j.bandc.2006.03.005 | |
dc.relation | Friederici, A. D. (2011). The Brain Basis of Language Processing: From Structure to
Function. Physiological Reviews, 91(4), 1357–1392.
https://doi.org/10.1152/physrev.00006.2011 | |
dc.relation | Fritz, T., Jentschke, S., Gosselin, N., Sammler, D., Peretz, I., Turner, R., … Koelsch, S.
(2009). Universal Recognition of Three Basic Emotions in Music. Current Biology,
19(7), 573–576. https://doi.org/10.1016/j.cub.2009.02.058 | |
dc.relation | Frost, C., Sauter, D. A., Gordon, E., Omar, R., Hailstone, J. C., Bartlett, J. W., … Scott,
S. K. (2011). The structural neuroanatomy of music emotion recognition: Evidence
from frontotemporal lobar degeneration. NeuroImage, 56(3), 1814–1821.
https://doi.org/10.1016/j.neuroimage.2011.03.002 | |
dc.relation | Fukui, H. (2001). Music and Testosterone. Annals of the New York Academy of
Sciences, 930(1), 448–451. https://doi.org/10.1111/j.1749-6632.2001.tb05767.x | |
dc.relation | Fundation Sing up. (2011). Synthesis Report: Sing Up 2007-2011 Programme
Evaluation. Retrieved from www.singup.org | |
dc.relation | García-Casares, N., Berthier Torres, M. L., Froudist Walsh, S., & González-Santos, P.
(2013). Modelo de cognición musical y amusia. Neurologia, 28(3), 179–186.
https://doi.org/10.1016/j.nrl.2011.04.010 | |
dc.relation | Garland, E. C., Goldizen, A. W., Rekdahl, M. L., Constantine, R., Garrigue, C., Hauser,
N. D., … Noad, M. J. (2011). Dynamic horizontal cultural transmission of humpback
whale song at the ocean basin scale. Current Biology, 21(8), 687–691.
https://doi.org/10.1016/j.cub.2011.03.019 | |
dc.relation | Gaser, C., & Schlaug, G. (2003). Brain structures differ between musicians and nonmusicians. The Journal of Neuroscience : The Official Journal of the Society for
Neuroscience, 23(27), 9240–9245. https://doi.org/10.1523/JNEUROSCI.23-27-
09240.2003 | |
dc.relation | Gingras, B., Honing, H., Peretz, I., Trainor, L. J., & Fisher, S. E. (2015). Defining the
biological bases of individual differences in musicality. Philosophical Transactions of
the Royal Society B: Biological Sciences, 370(1664).
https://doi.org/10.1098/rstb.2014.0092 | |
dc.relation | Godwin, J., & Blacking, J. (2006). How Musical Is Man? Notes, 31(1), 41.
https://doi.org/10.2307/895922 | |
dc.relation | Gosselin, N. (2005). Impaired recognition of scary music following unilateral temporal
lobe excision. Brain, 128(3), 628–640. https://doi.org/10.1093/brain/awh420 | |
dc.relation | Gosselin, N. (2006). Emotional responses to unpleasant music correlates with damage
to the parahippocampal cortex. Brain, 129(10), 2585–2592.
https://doi.org/10.1093/brain/awl240 | |
dc.relation | Gosselin, N., Paquette, S., & Peretz, I. (2015). Sensitivity to musical emotions in
congenital amusia. Cortex, 71, 171–182.
https://doi.org/10.1016/j.cortex.2015.06.022 | |
dc.relation | Gosselin, N., Peretz, I., Johnsen, E., & Adolphs, R. (2007). Amygdala damage impairs
emotion recognition from music. Neuropsychologia, 45(2), 236–244.
https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2006.07.012 | |
dc.relation | Grahn, J. A. (2012). Neural Mechanisms of Rhythm Perception: Current Findings and
Future Perspectives. Topics in Cognitive Science, 4(4), 585–606.
https://doi.org/10.1111/j.1756-8765.2012.01213.x | |
dc.relation | Grahn, J. A., & Rowe, J. B. (2013). Finding and Feeling the Musical Beat: Striatal
Dissociations between Detection and Prediction of Regularity. Cerebral Cortex,
23(4), 913–921. https://doi.org/10.1093/cercor/bhs083 | |
dc.relation | Grebosz-Haring, K., & Thun-Hohenstein, L. (2018). Effects of group singing versus
group music listening on hospitalized children and adolescents with mental
disorders: A pilot study. Heliyon, 4(12), e01014.
https://doi.org/10.1016/j.heliyon.2018.e01014 | |
dc.relation | Grube, M., & Griffiths, T. D. (2009). Metricality-enhanced temporal encoding and the
subjective perception of rhythmic sequences. Cortex, 45(1), 72–79.
https://doi.org/10.1016/j.cortex.2008.01.006 | |
dc.relation | Haesler, S. (2004). FoxP2 Expression in Avian Vocal Learners and Non-Learners.
Journal of Neuroscience, 24(13), 3164–3175.
https://doi.org/10.1523/JNEUROSCI.4369-03.2004 | |
dc.relation | Hallam, S. (2010). The power of music: Its impact on the intellectual, social and personal
development of children and young people. International Journal of Music
Education, Vol. 28, pp. 269–289. https://doi.org/10.1177/0255761410370658 | |
dc.relation | Hansen, M., Wallentin, M., & Vuust, P. (2013). Working memory and musical
91
competence of musicians and non-musicians. Psychology of Music, 41(6), 779–
793. https://doi.org/10.1177/0305735612452186 | |
dc.relation | Hasegawa, A., Okanoya, K., Hasegawa, T., & Seki, Y. (2011). Rhythmic synchronization
tapping to an audio-visual metronome in budgerigars. Scientific Reports, 1, 120.
https://doi.org/10.1038/srep00120 | |
dc.relation | Hattori, Y., Tomonaga, M., & Matsuzawa, T. (2013). Spontaneous synchronized tapping
to an auditory rhythm in a chimpanzee. Scientific Reports, 3.
https://doi.org/10.1038/srep01566 | |
dc.relation | Herdener, M., Esposito, F., di Salle, F., Boller, C., Hilti, C. C., Habermeyer, B., …
Cattapan-Ludewig, K. (2010). Musical Training Induces Functional Plasticity in
Human Hippocampus. Journal of Neuroscience, 30(4), 1377–1384.
https://doi.org/10.1523/JNEUROSCI.4513-09.2010 | |
dc.relation | Herholz, S. C., & Zatorre, R. J. (2012). Musical Training as a Framework for Brain
Plasticity: Behavior, Function, and Structure. Neuron, 76(3), 486–502.
https://doi.org/10.1016/j.neuron.2012.10.011 | |
dc.relation | Hilliard, R. E. (2007). The effects of orff-based music therapy and social work groups on
childhood grief symptoms and behaviors. Journal of Music Therapy, 44(2), 123–
138. Retrieved from http://jmt.oxfordjournals.org/ | |
dc.relation | Hoelzel, A. R. (2009). Marine mammal biology : an evolutionary approach (A. R. Hoelzel,
Ed.). Blackwell Science. | |
dc.relation | Hoeschele, M., Merchant, H., Kikuchi, Y., Hattori, Y., & ten Cate, C. (2015). Searching
for the origins of musicality across species. Philosophical Transactions of the Royal
Society B: Biological Sciences, Vol. 370, pp. 20140094–20140094.
https://doi.org/10.1098/rstb.2014.0094 | |
dc.relation | Honing, H. (2012). Without it no music: Beat induction as a fundamental musical trait.
Annals of the New York Academy of Sciences, 1252(1), 85–91. | |
dc.relation | Honing, Henkjan. (2018). The origins of musicality. ILLC (FGw), Language and
Computation, Brain and Cognition, ILLC (FNWI/FGw). | |
dc.relation | Honing, Henkjan, ten Cate, C., Peretz, I., & Trehub, S. E. (2015). Without it no music:
Cognition, biology and evolution of musicality. Philosophical Transactions of the
Royal Society B: Biological Sciences, 370(1664).
https://doi.org/10.1098/rstb.2014.0088 | |
dc.relation | Hopkins, M. T. (2015). Collaborative composing in high school string chamber music
ensembles. Journal of Research in Music Education, 62(4), 405–424.
https://doi.org/10.1177/0022429414555135 | |
dc.relation | Hsieh, S., Hornberger, M., Piguet, O., & Hodges, J. R. (2012). Brain correlates of
musical and facial emotion recognition: Evidence from the dementias.
Neuropsychologia, 50(8), 1814–1822.
https://doi.org/10.1016/j.neuropsychologia.2012.04.006 | |
dc.relation | Hucklebridge, F., Lambert, S., Clow, A., Warburton, D. M., Evans, P. D., & Sherwood, N.
(2000). Modulation of secretory immunoglobulin A in saliva; response to
manipulation of mood. Biological Psychology, 53(1), 25–35.
https://doi.org/10.1016/S0301-0511(00)00040-5 | |
dc.relation | Huron, D. (2001). Is Music an Evolutionary Adaptation? Annals of the New York
Academy of Sciences, 930(1), 43–61. | |
dc.relation | Hyde, K. L., & Peretz, I. (2004). Brains That Are out of Tune but in time. Psychological
Science, 15(5), 356–360. https://doi.org/10.1111/j.0956-7976.2004.00683.x | |
dc.relation | Inoue, Y., Takahashi, T., Burriss, R. P., Arai, S., Hasegawa, T., Yamagishi, T., &
Kiyonari, T. (2017). Testosterone promotes either dominance or submissiveness in
the Ultimatum Game depending on players’ social rank. Scientific Reports, 7(1),
5335. https://doi.org/10.1038/s41598-017-05603-7 | |
dc.relation | J. Trost, W., Labbé, C., & Grandjean, D. (2017). Rhythmic entrainment as a musical
affect induction mechanism. Neuropsychologia, Vol. 96, pp. 96–110.
https://doi.org/10.1016/j.neuropsychologia.2017.01.004 | |
dc.relation | Jäncke, L. (2009). Music drives brain plasticity. F1000 Biology Reports, 1, 78.
https://doi.org/10.3410/B1-78 | |
dc.relation | Jiang, C., Hamm, J. P., Lim, V. K., Kirk, I. J., Chen, X., & Yang, Y. (2012). Amusia
Results in Abnormal Brain Activity following Inappropriate Intonation during Speech
Comprehension. PLoS ONE, 7(7), e41411.
https://doi.org/10.1371/journal.pone.0041411 | |
dc.relation | Jiang, C., Liu, F., & Wong, P. C. M. (2017). Sensitivity to musical emotion is influenced
by tonal structure in congenital amusia. Scientific Reports, 7(1), 7624.
https://doi.org/10.1038/s41598-017-08005-x | |
dc.relation | Justus, T., & Hutsler, J. J. (2005). Fundamental issues in the evolutionary psychology of
music:: Assessing Innateness and Domain Specificity. Music Perception, 23(1), 1–
27. https://doi.org/10.1525/mp.2005.23.1.1 | |
dc.relation | Karageorghis, C. I., & Terry, P. C. (2012). Chapter 1 - The psychological,
psychophysical and ergogenic effects of music in sport: A review and synthesis. In
Sporting Sounds: Relationships Between Sport and Music (Vol. 1, pp. 13–36).
https://doi.org/10.4324/9780203887974 | |
dc.relation | Kawase, S., & Ogawa, J. (2018). Group music lessons for children aged 1–3 improve
accompanying parents’ moods. Psychology of Music, 1, 11.
https://doi.org/10.1177/0305735618803791 | |
dc.relation | Keeler, J. R., Roth, E. A., Neuser, B. L., Spitsbergen, J. M., Waters, D. J. M., & Vianney,
J.-M. (2015). The neurochemistry and social flow of singing: bonding and oxytocin.
Frontiers in Human Neuroscience, 9. https://doi.org/10.3389/fnhum.2015.00518 | |
dc.relation | Khalfa, S., Guye, M., Peretz, I., Chapon, F., Girard, N., Chauvel, P., & Liégeois-Chauvel,
C. (2008). Evidence of lateralized anteromedial temporal structures involvement in
musical emotion processing. Neuropsychologia, 46(10), 2485–2493.
https://doi.org/10.1016/j.neuropsychologia.2008.04.009 | |
dc.relation | Kiebel, S. J., Daunizeau, J., & Friston, K. J. (2008). A Hierarchy of Time-Scales and the
Brain. PLoS Computational Biology, 4(11), e1000209.
https://doi.org/10.1371/journal.pcbi.1000209 | |
dc.relation | Kirschner, S., & Tomasello, M. (2009). Joint drumming: Social context facilitates
synchronization in preschool children. Journal of Experimental Child Psychology,
102(3), 299–314. https://doi.org/10.1016/j.jecp.2008.07.005 | |
dc.relation | Kirschner Sebastian, S., & Tomasello, M. (2010). Joint music making promotes prosocial
behavior in 4-year-old children. Evolution and Human Behavior, 31(5), 354–364.
https://doi.org/10.1016/j.evolhumbehav.2010.04.004 | |
dc.relation | Koechlin, E., & Jubault, T. (2006). Broca’s Area and the Hierarchical Organization of
Human Behavior. Neuron, 50(6), 963–974.
https://doi.org/10.1016/j.neuron.2006.05.017 | |
dc.relation | Koelsch, S. (2010). Towards a neural basis of music-evoked emotions. Trends in
Cognitive Sciences, 14(3), 131–137. https://doi.org/10.1016/j.tics.2010.01.002 | |
dc.relation | Koelsch, S. (2012). Music and language. In Brain and music (p. 308). Wiley-Blackwell. | |
dc.relation | Konoike, N., Kotozaki, Y., Jeong, H., Miyazaki, A., Sakaki, K., Shinada, T., …
Nakamura, K. (2015). Temporal and Motor Representation of Rhythm in FrontoParietal Cortical Areas: An fMRI Study. PLOS ONE, 10(6), e0130120.
https://doi.org/10.1371/journal.pone.0130120 | |
dc.relation | Krebs, J. R., & Kroodsma, D. E. (1980). Repertoires and Geographical Variation in Bird
Song. Advances in the Study of Behavior, 11, 143–177.
https://doi.org/10.1016/S0065-3454(08)60117-5 | |
dc.relation | Kreutz, G. (2014). Does Singing Facilitate Social Bonding? Music and Medicine, 6(2),
51–60. | |
dc.relation | Kreutz, G., Bongard, S., Rohrmann, S., Hodapp, V., & Grebe, D. (2004). Effects of Choir
Singing or Listening on Secretory Immunoglobulin A, Cortisol, and Emotional State.
Journal of Behavioral Medicine, 27(6), 623–635. https://doi.org/10.1007/s10865-
004-0006-9 | |
dc.relation | Kuck, H., Grossbach, M., Bangert, M., & Altenmüller, E. (2003). Brain processing of
meter and rhythm in music. Electrophysiological evidence of a common network.
Annals of the New York Academy of Sciences, 999, 244–253. | |
dc.relation | Lappe, C., Herholz, S. C., Trainor, L. J., & Pantev, C. (2008). Cortical Plasticity Induced
by Short-Term Unimodal and Multimodal Musical Training. Journal of Neuroscience,
28(39), 9632–9639. https://doi.org/10.1523/jneurosci.2254-08.2008 | |
dc.relation | Large, E. W., & Gray, P. M. (2015). Supplemental Material for Spontaneous Tempo and
Rhythmic Entrainment in a Bonobo (Pan paniscus). Journal of Comparative
Psychology, 129(4), 317. https://doi.org/10.1037/com0000011.supp | |
dc.relation | Launay, J., Dean, R. T., & Bailes, F. (2013). Synchronization can influence trust
following virtual interaction. Experimental Psychology, 60(1), 53–63.
https://doi.org/10.1027/1618-3169/a000173 | |
dc.relation | Lehmann, J., Korstjens, A. H., & Dunbar, R. I. M. (2007). Group size, grooming and
social cohesion in primates. Animal Behaviour, 74(6), 1617–1629.
https://doi.org/10.1016/j.anbehav.2006.10.025 | |
dc.relation | Leongómez, J. D. (2015). La música como objeto de estudio científico: consideraciones
en torno a la musicalidad y el origen de la música. (Pensamiento), (Palabra) y Obra,
96
13(13), 77–86. https://doi.org/10.17227/2011804X.15PPO77.86 | |
dc.relation | Leongómez, J. D., Binter, J., Kubicová, L., Stolařová, P., Klapilová, K., Havlíček, J., &
Roberts, S. C. (2014). Vocal modulation during courtship increases proceptivity
even in naive listeners. Evolution and Human Behavior, 35(6), 489–496.
https://doi.org/10.1016/j.evolhumbehav.2014.06.008 | |
dc.relation | Lévi-Strauss, C. (1958). Anthropologie structurale. Population (French Edition), 13(3),
527–528. https://doi.org/10.2307/1525444 | |
dc.relation | Lima, C. F., Brancatisano, O., Fancourt, A., Müllensiefen, D., Scott, S. K., Warren, J. D.,
& Stewart, L. (2016). Impaired socio-emotional processing in a developmental
music disorder. Scientific Reports, 6(1), 34911. https://doi.org/10.1038/srep34911 | |
dc.relation | Lolli, S. L., Lewenstein, A. D., Basurto, J., Winnik, S., & Loui, P. (2015). Sound
frequency affects speech emotion perception: results from congenital amusia.
Frontiers in Psychology, 6, 1340. https://doi.org/10.3389/fpsyg.2015.01340 | |
dc.relation | Lortat-Jacob, B., & Bernard. (2004). Ce que chanter veut dire. L’Homme. Revue
Française d’anthropologie, (171–172), 83–101.
https://doi.org/10.4000/lhomme.24862 | |
dc.relation | Love, T. M. (2014). Oxytocin, motivation and the role of dopamine. Pharmacology
Biochemistry and Behavior, 119, 49–60. https://doi.org/10.1016/j.pbb.2013.06.011 | |
dc.relation | Lu, X., Ho, H. T., Liu, F., Wu, D., & Thompson, W. F. (2015). Intonation processing
deficits of emotional words among Mandarin Chinese speakers with congenital
amusia: an ERP study. Frontiers in Psychology, 6, 385.
https://doi.org/10.3389/fpsyg.2015.00385 | |
dc.relation | Lucas, G., Clayton, M., & Leante, L. (2017). Inter-group entrainment in Afro-Brazilian
Congado ritual. Empirical Musicology Review, 6(2), 75–102.
https://doi.org/10.18061/1811/51203 | |
dc.relation | Ludke, K. M., Ferreira, F., & Overy, K. (2014). Singing can facilitate foreign language
learning. Memory and Cognition, 42(1), 41–52. https://doi.org/10.3758/s13421-013-
0342-5 | |
dc.relation | Maner, J. K. (2017). Dominance and prestige: A tale of two hierarchies. Current
Directions in Psychological Science, Vol. 26, pp. 526–531.
https://doi.org/10.1177/0963721417714323 | |
dc.relation | Marcus, G. F. (2012). Musicality: Instinct or Acquired Skill? Topics in Cognitive Science,
4(4), 498–512. https://doi.org/10.1111/j.1756-8765.2012.01220.x | |
dc.relation | Marek, S., & Dosenbach, N. U. F. (2018). The frontoparietal network: function,
electrophysiology, and importance of individual precision mapping. Dialogues in
Clinical Neuroscience, 20(2), 133–140. | |
dc.relation | Marin, M. M., Thompson, W. F., Gingras, B., & Stewart, L. (2015). Affective evaluation of
simultaneous tone combinations in congenital amusia. Neuropsychologia, 78, 207–
220. https://doi.org/10.1016/j.neuropsychologia.2015.10.004 | |
dc.relation | Marler, P. (2001). Origins of music and speech: Insights from animals. In The origins of
music (pp. 31–48). | |
dc.relation | Martínez C, M. (2017). Música y movimiento en Educación Infantil (pp. 1–35). pp. 1–35.
Retrieved from
http://digibug.ugr.es/bitstream/handle/10481/45895/MartinezCotes_TFGMusicaMotr
icidad.pdf?sequence=1 | |
dc.relation | Matheson, M. D., & Bernstein, I. S. (2000). Grooming, social bonding, and agonistic
aiding in rhesus monkeys. American Journal of Primatology, 51(3), 177–186.
https://doi.org/10.1002/1098-2345(200007)51:3<177::AID-AJP2>3.0.CO;2-K | |
dc.relation | Mathias, B., Lidji, P., Honing, H., Palmer, C., & Peretz, I. (2016). Electrical Brain
Responses to Beat Irregularities in Two Cases of Beat Deafness. Frontiers in
Neuroscience, 10, 40. https://doi.org/10.3389/fnins.2016.00040 | |
dc.relation | Matthews, W. K., & Kitsantas, A. (2007). Group cohesion, collective efficacy, and
motivational climate as predictors of conductor support in music ensembles. Journal
of Research in Music Education, 55(1), 6–17.
https://doi.org/10.1177/002242940705500102 | |
dc.relation | McAdams, S. (2013). Musical Timbre Perception. The Psychology of Music, 35–67.
https://doi.org/10.1016/B978-0-12-381460-9.00002-X | |
dc.relation | McDermott, J. H., Lehr, A. J., & Oxenham, A. J. (2008). Is relative pitch specific to pitch?
Psychological Science, 19(12), 1263–1271. https://doi.org/10.1111/j.1467-
9280.2008.02235.x | |
dc.relation | McFerran, K. S., & Wölfl, A. (2015). Music, Violence and Music Therapy with Young
People in Schools: A position paper A Brief History of Music and Violence. Voices:
A World Forum for Music The, 15(2). Retrieved from
https://www.youtube.com/watch?v=lKpLckW | |
dc.relation | Mehr, S., Singh, M., Knox, D., Lucas, C., Ketter, D., Pickens-Jones, D., … Glowacki, L.
(2018). A natural history of song. PsyArXiv Preprints. | |
dc.relation | Meister, I. G., Boroojerdi, B., Foltys, H., Sparing, R., Huber, W., & Töpper, R. (2003).
Motor cortex hand area and speech: implications for the development of language.
Neuropsychologia, 41(4), 401–406. | |
dc.relation | Merker, B. H., Madison, G. S., & Eckerdal, P. (2009). On the role and origin of isochrony
in human rhythmic entrainment. Cortex, 45(1), 4–17.
https://doi.org/10.1016/j.cortex.2008.06.011 | |
dc.relation | Miller, G. F. (2001). Evolution of Human Music through Sexual Selection. The Origins of
Music, 329–360. https://doi.org/10.7551/mitpress/5190.003.0025 | |
dc.relation | Miller, K. J., Foster, B. L., & Honey, C. J. (2012). Does rhythmic entrainment represent a
generalized mechanism for organizing computation in the brain? Frontiers in | |
dc.relation | Mitterschiffthaler, M. T., Fu, C. H. Y., Dalton, J. A., Andrew, C. M., & Williams, S. C. R.
(2007). A functional MRI study of happy and sad affective states induced by
classical music. Human Brain Mapping, 28(11), 1150–1162.
https://doi.org/10.1002/hbm.20337 | |
dc.relation | Morton, D., & Malm, W. P. (2006). Music Cultures of the Pacific, the Near East, and
Asia. Ethnomusicology, 12(1), 140. https://doi.org/10.2307/850562 | |
dc.relation | Mosing, M. A., Verweij, K. J. H., Madison, G., Pedersen, N. L., Zietsch, B. P., & Ullén, F.
(2015). Did sexual selection shape human music? Testing predictions from the
sexual selection hypothesis of music evolution using a large genetically informative
sample of over 10,000 twins. Evolution and Human Behavior, 36(5), 359–366.
https://doi.org/10.1016/j.evolhumbehav.2015.02.004 | |
dc.relation | Müller, F. “Floyd,” Agamanolis, S., & Picard, R. (2003). Exertion interfaces: sports over a
distance for social bonding and fun. Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems - CHI’03, 561–568.
https://doi.org/10.1145/642611.642709 | |
dc.relation | Münte, T. F., Altenmüller, E., & Jäncke, L. (2002). The musician’s brain as a model of
neuroplasticity. Nature Reviews Neuroscience, 3(6), 473–478.
https://doi.org/10.1038/nrn843 | |
dc.relation | Noad, M. J., Cato, D. H., Bryden, M. M., Jenner, M.-N., & Jenner, K. C. S. (2000).
Cultural revolution in whale songs. Nature, 408(6812), 537–537.
https://doi.org/10.1038/35046199 | |
dc.relation | North, A. C., & Hargreaves, D. J. (1999). Music and Adolescent Identity. Music
Education Research, 1(1), 75–92. https://doi.org/10.1080/1461380990010107 | |
dc.relation | North, A. C., Hargreaves, D. J., & O’Neill, S. A. (2000). The importance of music to
adolescents. British Journal of Educational Psychology, 70(2), 255–272.
100
https://doi.org/10.1348/000709900158083 | |
dc.relation | Nowicki, S., & Marler, P. (1988). How do birds sing? Music Perception: An
Interdisciplinary Journal, 5(4), 391–426. | |
dc.relation | Nozaradan, S. (2014). Exploring how musical rhythm entrains brain activity with
electroencephalogram frequency-tagging. Philosophical Transactions of the Royal
Society B: Biological Sciences, Vol. 369, pp. 20130393–20130393.
https://doi.org/10.1098/rstb.2013.0393 | |
dc.relation | Nunes Silva, M., & Geraldi Haase, V. (2013). Amusias and modularity of musical
cognitive processing. Psychology and Neuroscience, 6(1), 45–56.
https://doi.org/10.3922/j.psns.2013.1.08 | |
dc.relation | O’Neill, C. T., Trainor, L. J., & Trehub, S. E. (2001). Infants’ Responsiveness to Fathers’
Singing. Music Perception, 18(4), 409–425.
https://doi.org/10.1525/mp.2001.18.4.409 | |
dc.relation | Obleser, J., & Eisner, F. (2009). Pre-lexical abstraction of speech in the auditory cortex.
Trends in Cognitive Sciences, 13(1), 14–19.
https://doi.org/10.1016/j.tics.2008.09.005 | |
dc.relation | Patel, A. D. (2010). Music, biological evolution, and the brain. In Vesicle.Nsi.Edu. | |
dc.relation | Patel, A. D. (2014). The Evolutionary Biology of Musical Rhythm: Was Darwin Wrong?
PLoS Biology, 12(3). https://doi.org/10.1371/journal.pbio.1001821 | |
dc.relation | Pearce, E., Launay, J., Van Duijn, M., Rotkirch, A., David-Barrett, T., & Dunbar, R. I. M.
(2016). Singing together or apart: The effect of competitive and cooperative singing
on social bonding within and between sub-groups of a university Fraternity.
Psychology of Music, 44(6), 1255–1273.
https://doi.org/10.1177/0305735616636208 | |
dc.relation | Perani, D., Saccuman, M. C., Scifo, P., Spada, D., Andreolli, G., Rovelli, R., … Koelsch,
101
S. (2010). Functional specializations for music processing in the human newborn
brain. Proceedings of the National Academy of Sciences, 107(10), 4758–4763.
https://doi.org/10.1073/pnas.0909074107 | |
dc.relation | Peretz, I. (1990). Processing of local and global musical information by unilateral braindamaged patients. Brain : A Journal of Neurology, 113 ( Pt 4, 1185–1205. | |
dc.relation | Peretz, I. (2006). The nature of music from a biological perspective. Cognition, 100(1),
1–32. https://doi.org/10.1016/j.cognition.2005.11.004 | |
dc.relation | Peretz, I. (2009). Music, Language and Modularity Framed in Action. Psychologica
Belgica, 49(2–3), 157. https://doi.org/10.5334/pb-49-2-3-157 | |
dc.relation | Peretz, I. (2016). Neurobiology of Congenital Amusia. Trends in Cognitive Sciences,
20(11), 857–867. https://doi.org/10.1016/j.tics.2016.09.002 | |
dc.relation | Peretz, I., Ayotte, J., Zatorre, R. J., Mehler, J., Ahad, P., Penhune, V. B., & Jutras, B.
(2002). Congenital Amusia: A disorder of fine-grained pitch discrimination. Neuron,
33(2), 185–191. https://doi.org/10.1016/S0896-6273(01)00580-3 | |
dc.relation | Peretz, I., & Coltheart, M. (2003). Modularity of music processing. Nature Neuroscience,
Vol. 6, pp. 688–691. https://doi.org/10.1038/nn1083 | |
dc.relation | Peretz, I., Cummings, S., & Dubé, M.-P. (2007). The Genetics of Congenital Amusia
(Tone Deafness): A Family-Aggregation Study. The American Journal of Human
Genetics, 81(3), 582–588. https://doi.org/10.1086/521337 | |
dc.relation | Peretz, I., & Hyde, K. L. (2003). What is specific to music processing? Insights from
congenital amusia. Trends in Cognitive Sciences, 7(8), 362–367.
https://doi.org/10.1016/S1364-6613(03)00150-5 | |
dc.relation | Pfeifer, J., & Hamann, S. (2018). The Nature and Nurture of Congenital Amusia: A Twin
Case Study. Frontiers in Behavioral Neuroscience, 12, 120.
https://doi.org/10.3389/fnbeh.2018.00120 | |
dc.relation | Phillips-Silver, J., Aktipis, C. A., & Bryant, G. A. (2010). The ecology of entrainment:
Foundations of coordinated rhythmic movement. Music Perception, 28(1), 3–14.
https://doi.org/10.1525/mp.2010.28.1.3 | |
dc.relation | Phillips-Silver, J., Toiviainen, P., Gosselin, N., Piché, O., Nozaradan, S., Palmer, C., &
Peretz, I. (2011). Born to dance but beat deaf: A new form of congenital amusia.
Neuropsychologia, 49(5), 961–969.
https://doi.org/10.1016/j.neuropsychologia.2011.02.002 | |
dc.relation | Pinker, S. (1997). How the mind works (Vol. 35). W. W. Norton & Company. | |
dc.relation | Pinker, S. (1998). How the mind works. London: Penguin Books. | |
dc.relation | Pinker, S. (2007). Toward a consilient study of literature. Philosophy and Literature,
31(1), 162–178. https://doi.org/10.1353/phl.2007.0016 | |
dc.relation | Porter, J., Blacking, J., & Byron, R. (2006). Music, Culture and Experience: Selected
Papers of John Blacking. Western Folklore, 55(2), 163.
https://doi.org/10.2307/1500182 | |
dc.relation | Rabinowitch, T. C., Cross, I., & Burnard, P. (2013). Long-term musical group interaction
has a positive influence on empathy in children. Psychology of Music, 41(4), 484–
498. https://doi.org/10.1177/0305735612440609 | |
dc.relation | Racette, A., Bard, C., & Peretz, I. (2006). Making non-fluent aphasics speak: Sing along!
Brain, 129(10), 2571–2584. https://doi.org/10.1093/brain/awl250 | |
dc.relation | Rappoport, D., & Dana. (2004). Musique et morphologie rituelle. Chez les Toraja
d’Indonésie. L’Homme. Revue Française d’anthropologie, (171–172), 197–218.
https://doi.org/10.4000/lhomme.24892 | |
dc.relation | Rauschecker, J. P., Friederici, A. D., & Wise, R. J. S. (2012). Ventral and dorsal streams
in the evolution of speech and language. https://doi.org/10.3389/fnevo.2012.00007 | |
dc.relation | Rivers, J. W., & Kroodsma, D. E. (2000). Singing Behavior of the Hermit Thrush. Journal
103
of Field Ornithology, 71(3), 467–471. https://doi.org/10.1648/0273-8570-71.3.467 | |
dc.relation | Rodrigues, A. C., Loureiro, M., & Caramelli, P. (2014). Visual memory in musicians and
non-musicians. Frontiers in Human Neuroscience, 8, 424.
https://doi.org/10.3389/fnhum.2014.00424 | |
dc.relation | Rouget, G. (2004). L’efficacité musicale: musiquer pour survivre. Le cas des Pygmées.
L’Homme. Revue Française d’anthropologie, (171–172), 27–52.
https://doi.org/10.4000/lhomme.24855 | |
dc.relation | Rouse, A. A., Cook, P. F., Large, E. W., & Reichmuth, C. (2016). Beat keeping in a sea
lion as coupled oscillation: Implications for comparative understanding of human
rhythm. Frontiers in Neuroscience, 10, 256.
https://doi.org/10.3389/fnins.2016.00257 | |
dc.relation | Saarikallio, S., & Erkkilä, J. (2007). The role of music in adolescents’ mood regulation.
Psychology of Music, 35(1), 88–109. https://doi.org/10.1177/0305735607068889 | |
dc.relation | Salimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A., & Zatorre, R. J. (2011).
Anatomically distinct dopamine release during anticipation and experience of peak
emotion to music. Nature Neuroscience, 14(2), 257–262.
https://doi.org/10.1038/nn.2726 | |
dc.relation | Salmon, S. (2012). Musica humana: Thoughts on humanistic aspects of Orff-Schulwerk.
Orff Schulwerk Informationen, 87, 13–19 | |
dc.relation | Sammler, D. (2018). The Melodic Mind: Neural bases of intonation in speech and music. | |
dc.relation | Schachner, A., Brady, T. F., Pepperberg, I. M., & Hauser, M. D. (2009). Spontaneous
Motor Entrainment to Music in Multiple Vocal Mimicking Species. Current Biology,
19(10), 831–836. https://doi.org/10.1016/j.cub.2009.03.061 | |
dc.relation | Schaller, G. B. (1963). The mountain gorilla Chicago. Univ. Chicago Press. | |
dc.relation | Schladt, T. M., Nordmann, G. C., Emilius, R., Kudielka, B. M., de Jong, T. R., &
104
Neumann, I. D. (2017). Choir versus Solo Singing: Effects on M | |
dc.relation | Neumann, I. D. (2017). Choir versus Solo Singing: Effects on Mood, and Salivary
Oxytocin and Cortisol Concentrations. Frontiers in Human Neuroscience, 11, 430.
https://doi.org/10.3389/fnhum.2017.00430 | |
dc.relation | Schlaug, G. (2015). Musicians and music making as a model for the study of brain
plasticity. Progress in Brain Research, 217, 37–55.
https://doi.org/10.1016/bs.pbr.2014.11.020 | |
dc.relation | Schlaug, G., Marchina, S., & Norton, A. (2008). From Singing to Speaking: Why Singing
May Lead to Recovery of Expressive Language Function in Patients with Broca’s
Aphasia. Music Perception, 25(4), 315–323.
https://doi.org/10.1525/MP.2008.25.4.315 | |
dc.relation | Schögler, B. (1998). Music as a tool in communications research. Nordisk Tidsskrift for
Musikkterapi, 7(1), 40–49. https://doi.org/10.1080/08098139809477919 | |
dc.relation | Schuppert, M., Münte, T. F., Wieringa, B. M., & Altenmüller, E. (2000). Receptive
amusia: evidence for cross-hemispheric neural networks underlying music
processing strategies. Brain, 123(3), 546–559.
https://doi.org/10.1093/brain/123.3.546 | |
dc.relation | Seeger, A. (2017). Chanter l’identité. L’Homme. Revue Française d’anthropologie, (171–
172), 135–150. https://doi.org/10.4000/lhomme.24877 | |
dc.relation | Smith, J. N., Goldizen, A. W., Dunlop, R. A., & Noad, M. J. (2008). Songs of male
humpback whales, Megaptera novaeangliae, are involved in intersexual
interactions. Animal Behaviour, 76(2), 467–477.
https://doi.org/10.1016/J.ANBEHAV.2008.02.013 | |
dc.relation | Sparks, R., Helm, N., & Albert, M. (1974). Aphasia rehabilitation resulting from melodic
intonation therapy. Cortex; a Journal Devoted to the Study of the Nervous System
and Behavior, 10(4), 303–316. | |
dc.relation | Stainsby, T., & Cross, I. (2012). The perception of pitch (Vol. 1; S. Hallam, I. Cross, & M.
105
Thaut, Eds.). https://doi.org/10.1093/oxfordhb/9780199298457.013.0005 | |
dc.relation | Steinthal, H. (1881). Einleitung in die Psychologie und Sprachwissenschaft. | |
dc.relation | Sue Carter, C. (1998). Neuroendocrine perspectives on social attachment and love.
Psychoneuroendocrinology, 23(8), 779–818. https://doi.org/10.1016/S0306-
4530(98)00055-9 | |
dc.relation | Sullivan, P., & Rickers, K. (2013). The effect of behavioral synchrony in groups of
teammates and strangers. International Journal of Sport and Exercise Psychology,
11(3), 286–291. https://doi.org/10.1080/1612197X.2013.750139 | |
dc.relation | Suzuki, M., Kanamori, M., Watanabe, M., Nagasawa, S., Kojima, E., Ooshiro, H., &
Nakahara, D. (2004). Behavioral and endocrinological evaluation of music therapy
for elderly patients with dementia. Nursing and Health Sciences, 6(1), 11–18.
https://doi.org/10.1111/j.1442-2018.2003.00168.x | |
dc.relation | Talamini, F., Carretti, B., & Grassi, M. (2016). The Working Memory of Musicians and
Nonmusicians. Music Perception: An Interdisciplinary Journal, 34(2), 183–191.
https://doi.org/10.1525/mp.2016.34.2.183 | |
dc.relation | Tattersall, I. (2006). The Singing Neanderthals: The Origins of Music, Language, Mind
and Body. In The Quarterly Review of Biology (Vol. 81, pp. 425–425).
https://doi.org/10.1086/511618 | |
dc.relation | Tattersall, I. (2006). The Singing Neanderthals: The Origins of Music, Language, Mind
and Body. In The Quarterly Review of Biology (Vol. 81, pp. 425–425).
https://doi.org/10.1086/511618 | |
dc.relation | Teramitsu, I., & White, S. A. (2006). FoxP2 Regulation during Undirected Singing in
Adult Songbirds. Journal of Neuroscience, 26(28), 7390–7394.
https://doi.org/10.1523/jneurosci.1662-06.2006 | |
dc.relation | Theorell, T. (2014). Music in Social Cohesion. In Psychological Health Effects of Musical
Experiences (pp. 17–27). https://doi.org/10.1007/978-94-017-8920-2_3 | |
dc.relation | Thorpe, L. A., & Cohen, A. J. (2007). The origins of musicality. Infant Behavior and
Development, 7, 363. https://doi.org/10.1016/s0163-6383(84)80425-7 | |
dc.relation | Tomasello, M., & Carpenter, M. (2007). Shared intentionality. Developmental Science,
10(1), 121–125. https://doi.org/10.1111/j.1467-7687.2007.00573.x | |
dc.relation | Tomasello, M., Carpenter, M., Call, J., Behne, T., & Moll, H. (2005). Understanding and
sharing intentions: The origins of cultural cognition. Behavioral and Brain Sciences,
28(5), 675–691. https://doi.org/10.1017/S0140525X05000129 | |
dc.relation | Trainor, L. J., Austin, C. M., & Desjardins, R. N. (2000). Is infant-directed speech
prosody a result of the vocal expression of emotion? Psychological Science, 11(3),
188–195. https://doi.org/10.1111/1467-9280.00240 | |
dc.relation | Trehub, S. E. (2001). Human processing predispositions and musical universals. In The
origins of music. (pp. 427–448). | |
dc.relation | Trehub, S. E. (2003). The developmental origins of musicality. Nature Neuroscience,
Vol. 6, pp. 669–673. https://doi.org/10.1038/nn1084 | |
dc.relation | Trehub, S. E. (2018). Human Processing Predispositions and Musical Universals. In B.
M. & S. B. N. L. Wallin (Ed.), The Origins of Music (pp. 427–448).
https://doi.org/10.7551/mitpress/5190.003.0030 | |
dc.relation | Trehub, S. E., Plantinga, J., Brcic, J., & Nowicki, M. (2013). Cross-modal signatures in
maternal speech and singing. Frontiers in Psychology, 4, 811.
https://doi.org/10.3389/fpsyg.2013.00811 | |
dc.relation | Tyack, P. L. (1997). Vocal learning in cetaceans. Social Influences on Vocal
Development, 26, 208–233. Retrieved from
http://books.google.ch/books?id=U7h3s79HcrAC | |
dc.relation | Ullén, F., Mosing, M. A., Holm, L., Eriksson, H., & Madison, G. (2014). Psychometric
properties and heritability of a new online test for musicality, the Swedish Musical
Discrimination Test. Personality and Individual Differences, 63, 87–93.
https://doi.org/10.1016/j.paid.2014.01.057 | |
dc.relation | Uozumi, T., Tamagawa, A., Hashimoto, T., & Tsuji, S. (2004). Motor hand representation
in cortical area 44. Neurology, 62(5), 757–761. | |
dc.relation | Uvnäs-Moberg, K. (1998). Oxytocin may mediate the benefits of positive social
interaction and emotions. Psychoneuroendocrinology, 23(8), 819–835.
https://doi.org/10.1016/S0306-4530(98)00056-0 | |
dc.relation | Valdesolo, P., & DeSteno, D. (2011). Synchrony and the social tuning of compassion.
Emotion, 11(2), 262–266. https://doi.org/10.1037/a0021302 | |
dc.relation | Van Puyvelde, M., Vanfleteren, P., Loots, G., Deschuyffeleer, S., Vinck, B., Jacquet, W.,
& Verhelst, W. (2010). Tonal synchrony in mother-infant interaction based on
harmonic and pentatonic series. Infant Behavior and Development, 33(4), 387–400.
https://doi.org/10.1016/j.infbeh.2010.04.003 | |
dc.relation | Vernia C, A. M., Gustems C, J., & G, Calderón, C. (2016). Ritmo y procesamiento
temporal. Aportaciones de Jaques-Dalcroze al lenguaje musical. Magister, 28(1),
35–41. https://doi.org/10.1016/j.magis.2016.06.003 | |
dc.relation | Wallentin, M., Nielsen, A. H., Friis-Olivarius, M., Vuust, C., & Vuust, P. (2010). The
Musical Ear Test, a new reliable test for measuring musical competence. Learning
and Individual Differences, 20(3), 188–196.
https://doi.org/10.1016/j.lindif.2010.02.004 | |
dc.relation | Wallin, N. L., Merker, B. H., & Brown, S. (2000). The origins of music. MIT Press. | |
dc.relation | Wan, C. Y., & Schlaug, G. (2010). Music making as a tool for promoting brain plasticity
across the life span. Neuroscientist, Vol. 16, pp. 566–577.
https://doi.org/10.1177/1073858410377805 | |
dc.relation | Webb, D. M., & Zhang, J. (2005). FoxP2 in song-learning birds and vocal-learning
mammals. Journal of Heredity, 96(3), 212–216.
https://doi.org/10.1093/jhered/esi025 | |
dc.relation | Weinstein, D., Launay, J., Pearce, E., Dunbar, R. I. M., & Stewart, L. (2016). Singing
and social bonding: Changes in connectivity and pain threshold as a function of
group size. Evolution and Human Behavior, 37(2), 152–158.
https://doi.org/10.1016/j.evolhumbehav.2015.10.002 | |
dc.relation | Welch, G. F., Himonides, E., Saunders, J., Papageorgi, I., & Sarazin, M. (2014). Singing
and social inclusion. Frontiers in Psychology, 5, 803.
https://doi.org/10.3389/fpsyg.2014.00803 | |
dc.relation | Whaling, C. (2000). What’s behind a song? The neural basis of song learning in birds.
The Origins of Music, 65–76 | |
dc.relation | White, S. A. (2010). Genes and vocal learning. Brain and Language, 115(1), 21–28.
https://doi.org/10.1016/j.bandl.2009.10.002 | |
dc.relation | Williams, D. (2004). Homologues and Homology, Phenetics and Cladistics. Systematics
Association Special Volume, 67, 191–224.
https://doi.org/10.1201/9780203643037.ch9 | |
dc.relation | Youngerman, S. (1974). Maori Dancing since the Eighteenth Century. Ethnomusicology,
18(1), 75. https://doi.org/10.2307/850061 | |
dc.relation | Zatorre, R J, & Belin, P. (2001). Spectral and temporal processing in human auditory
cortex. Cerebral Cortex (New York, N.Y. : 1991), 11(10), 946–953. | |
dc.relation | Zatorre, Robert J. (1979). Recognition of dichotic melodies by musicians and
nonmusicians. Neuropsychologia, 17(6), 607–617. https://doi.org/10.1016/0028-
3932(79)90035-6 | |
dc.relation | Zhishuai, J., Hong, L., Daxing, W., Pin, Z., & Xuejing, L. (2017). Processing of emotional
faces in congenital amusia: An emotional music priming event-related potential
study. NeuroImage: Clinical, 14, 602–609.
https://doi.org/10.1016/J.NICL.2017.02.024 | |
dc.relation | Zimmerman, E., & Maron, J. L. (2016). FOXP2 gene deletion and infant feeding
difficulties: a case report. Molecular Case Studies, 2(1), a000547.
https://doi.org/10.1101/mcs.a000547 | |
dc.relation | Jiang, C., Hamm, J. P., Lim, V. K., Kirk, I. J., & Yang, Y. (2010). Processing melodic
contour and speech intonation in congenital amusics with Mandarin Chinese.
Neuropsychologia, 48(9), 2630–2639.
https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2010.05.009 | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | Acceso abierto | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
dc.source | reponame:Repositorio Institucional de la Universidad Pedagógica Nacional | |
dc.source | instname:Universidad Pedagógica Nacional | |
dc.subject | Música y sociedad | |
dc.subject | Musicalidad, | |
dc.subject | Cohesión social | |
dc.subject | Trabajo en equipo | |
dc.subject | Niños - Música | |
dc.subject | Evolución | |
dc.subject | Pedagogía y cognición | |
dc.title | Musicalidad y cohesión social: una aproximación experimental y bibliográfica desde el trabajo en equipo. | |
dc.type | info:eu-repo/semantics/bachelorThesis | |