dc.contributorLeongómez Peña, Juan David
dc.creatorMoreno Buitrago, Natalia Elízabeth
dc.creatorPérez Ariza, Juan Felipe
dc.date.accessioned2019-09-23T15:56:31Z
dc.date.accessioned2022-09-23T15:50:58Z
dc.date.available2019-09-23T15:56:31Z
dc.date.available2022-09-23T15:50:58Z
dc.date.created2019-09-23T15:56:31Z
dc.date.issued2019
dc.identifierhttp://hdl.handle.net/20.500.12209/10443
dc.identifierinstname:Universidad Pedagógica Nacional
dc.identifierinstname:Universidad Pedagógica Nacional
dc.identifierreponame: Repositorio Institucional UPN
dc.identifierrepourl: http://repositorio.pedagogica.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3486689
dc.description.abstractLos maestros de música generalmente afirman que, según su experiencia, la música beneficia de diversas maneras a los estudiantes. En esta investigación evaluamos la afirmación que apunta a que la música lleva a los estudiantes a trabajar mejor en equipo. 15 grupos de 5 personas, cada uno conformado por hombres y mujeres desconocidos entre sí, y de edades entre los 18 y 28 años de diferentes universidades de Bogotá, fueron asignados a tres condiciones: rítmica, ritmomelódica y control. Cada grupo debía componer o improvisar algo que los representara grupalmente: En la condición rítmica, los participantes debían componer o improvisar un ritmo entre los cinco e interpretarlo; en la condición ritmomelódica, los participantes debían componer una canción o cantar alguna existente que los representara; y finalmente, en el control, los participantes debían crear una frase o un slogan que no tuviera ningún tipo de rasgo musical. Acto seguido, cada grupo debía trabajar en equipo para completar dos actividades. En primer lugar, debían desenredar cinco cuerdas anudadas de manera estándar siguiendo unas reglas específicas. Luego de desenredarlas, debían armar un rompecabezas entre los cinco, para lo cual, dos integrantes del grupo debían vendarse los ojos y manipular las fichas, mientras que los tres restantes daban las instrucciones en un orden específico. El tiempo de ejecución era cronometrado desde que empezaban a desenredar las cuerdas hasta que ponían la última ficha del rompecabezas. Los datos fueron analizados realizando un análisis de covarianza, comparando el promedio del tiempo de ejecución de cada condición y controlando tres covariables: I) el promedio grupal del resultado de la prueba de musicalidad y el promedio grupal de los índices psicométricos de II) dominancia y III) prestigio. Los resultados no permiten inferir con suficiente certeza una relación entre las condiciones experimentales y el tiempo de ejecución de las pruebas de trabajo grupal (p = 0.797). Las implicaciones de estos resultados fueron analizados a la luz de una revisión bibliográfica en la que indagamos sobre las diferentes hipótesis que le aportan a la música un valor evolutivo.
dc.languagespa
dc.publisherUniversidad Pedagógica Nacional
dc.publisherLicenciatura en Música
dc.publisherFacultad de Bellas Artes
dc.relationAgustus, J. L., Mahoney, C. J., Downey, L. E., Omar, R., Cohen, M., White, M. J., … Warren, J. D. (2015). Functional MRI of music emotion processing in frontotemporal dementia. Annals of the New York Academy of Sciences, 1337(1), 232–240. https://doi.org/10.1111/nyas.12620
dc.relationAiello, L. C., & Dunbar, R. I. M. (1993). Neocortex Size, Group Size, and the Evolution of Language. Current Anthropology, 34(2), 184–193. https://doi.org/10.2307/2743982
dc.relationAlbert, M. L., Sparks, R. W., & Helm, N. A. (1973). Melodic intonation therapy for aphasia. Archives of Neurology, 29(2), 130–131.
dc.relationAltenmüller, E., & Furuya, S. (2017). Apollos Gift and Curse: Making Music as a model for Adaptive and Maladaptive Plasticity. E-Neuroforum, 23(2). https://doi.org/10.1515/nf-2016-A054
dc.relationAmaducci, L., Grassi, E., & Boller, F. (2002). Maurice Ravel and right-hemisphere musical creativity: Influence of disease on his last musical works? European Journal of Neurology, 9(1), 75–82. https://doi.org/10.1046/j.1468-1331.2002.00351.x
dc.relationAslan, U. (2017). Negotiating biological and cultural features of music: Towards the field of biomusicology. Rupkatha Journal on Interdisciplinary Studies in Humanities, 9(1), 2–10. https://doi.org/10.21659/rupkatha.v9n1.02
dc.relationAtzil, S., Hendler, T., & Feldman, R. (2011). Specifying the neurobiological basis of human attachment: Brain, hormones, and behavior in synchronous and intrusive mothers. Neuropsychopharmacology, 36(13), 2603–2615. https://doi.org/10.1038/npp.2011.172
dc.relationAu, W. W. L., Pack, A. A., Lammers, M. O., Herman, L. M., Deakos, M. H., & Andrews, K. (2006). Acoustic properties of humpback whale songs. The Journal of the Acoustical Society of America, 120(2), 1103–1110. https://doi.org/10.1121/1.2211547
dc.relationAxelrod, R., & Dion, D. (1988). The further evolution of cooperation. Science, 242(4884), 1385–1390. https://doi.org/10.1126/science.242.4884.1385
dc.relationBannan, N. (2017). Darwin, music and evolution: New insights from family correspondence on The Descent of Man. Musicae Scientiae, 21(1), 3–25. https://doi.org/10.1177/1029864916631794
dc.relationBaumgartner, T., Lutz, K., Schmidt, C. F., & Jäncke, L. (2006). The emotional power of music: How music enhances the feeling of affective pictures. Brain Research, 1075(1), 151–164. https://doi.org/10.1016/j.brainres.2005.12.065
dc.relationBehague, G., & Seeger, A. (2006). Why Suya Sing. A Musical Anthropology of an Amazonian People. Latin American Music Review / Revista de Música Latinoamericana, 9(2), 260. https://doi.org/10.2307/780298
dc.relationBellinger, D., Altenmüller, E., & Volkmann, J. (2017). Perception of Time in Music in Patients with Parkinson’s Disease–The Processing of Musical Syntax Compensates for Rhythmic Deficits. Frontiers in Neuroscience, 11, 68. https://doi.org/10.3389/fnins.2017.00068
dc.relationBengtsson, S. L., Ullén, F., Henrik Ehrsson, H., Hashimoto, T., Kito, T., Naito, E., … Sadato, N. (2009). Listening to rhythms activates motor and premotor cortices. Cortex, 45(1), 62–71. https://doi.org/10.1016/j.cortex.2008.07.002
dc.relationBenton, A. L. (1977). The Amusias. Music and the Brain, 378–397. https://doi.org/10.1016/B978-0-433-06703-0.50029-2
dc.relationBerwick, R. C., Beckers, G. J. L., Okanoya, K., & Bolhuis, J. J. (2012). A bird’s eye view of human language evolution. Frontiers in Evolutionary Neuroscience, 4, 5. https://doi.org/10.3389/fnevo.2012.00005
dc.relationBlood, A. J., & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences, 98(20), 11818–11823.
dc.relationBoughman, J. W., & Moss, C. F. (2003). Social Sounds: Vocal Learning and Development of Mammal and Bird Calls. In Acoustic Communication (pp. 138–224). https://doi.org/10.1007/0-387-22762-8_4
dc.relationBrainsky, Simón and Guzmán Cervantes, Eugenia and Matallana, Diana and Montaña, Clemencia and Montañés, Patricia and Morales, Hernando and Moreno Cardozo, Belén del Rocío and Morillo, Anibal and Pardo, Rodrigo and Rojas, Alejandro and Ruiz, E. (2010). Cerebro y música. In Cerebro, Arte y Creatividad. https://doi.org/10.1196
dc.relationBrandily, M. (2004). Dire ou chanter? L’exemple du Tibesti (Tchad). L’Homme. Revue Française d’anthropologie, (171–172), 303–311. https://doi.org/10.4000/lhomme.24924
dc.relationBrandler, S., & Rammsayer, T. H. (2003). Differences in mental abilities between musicians and non-musicians. Psychology of Music, 31(2), 123–138. https://doi.org/10.1177/0305735603031002290
dc.relationBrown, S., & Jordania, J. (2013). Universals in the world’s musics. Psychology of Music, 41(2), 229–248. https://doi.org/10.1177/0305735611425896
dc.relationBrown, S., Martinez, M. J., & Parsons, L. M. (2004). Passive music listening spontaneously engages limbic and paralimbic systems. Neuroreport, 15(13), 2033– 2037.
dc.relationBrufal A, J. D. (2013). Los principales métodos activos de educación musical en primaria. In Arseduca. Retrieved from https://dialnet.unirioja.es/servlet/articulo?codigo=4339750
dc.relationBrust, J. C. (2001). Music and the neurologist. A historical perspective. Annals of the New York Academy of Sciences, 930, 143–152.
dc.relationBuckner, M., & Margaret. (2004). Ce que nous dit la cloche manjako. L’Homme. Revue Française d’anthropologie, (171–172), 219–230. https://doi.org/10.4000/lhomme.24896
dc.relationCacioppo, J. T., Cacioppo, S., Capitanio, J. P., & Cole, S. W. (2015). The Neuroendocrinology of Social Isolation. In Annual Review of Psychology (Vol. 66). https://doi.org/10.1146/annurev-psych-010814-015240
dc.relationCallan, D. E., Tsytsarev, V., Hanakawa, T., Callan, A. M., Katsuhara, M., Fukuyama, H., & Turner, R. (2006). Song and speech: Brain regions involved with perception and covert production. NeuroImage, 31(3), 1327–1342. https://doi.org/10.1016/j.neuroimage.2006.01.036
dc.relationCarson, S. H., Peterson, J. B., & Higgins, D. M. (2005). Reliability, validity, and factor structure of the creative achievement questionnaire. Creativity Research Journal, 17(1), 37–50. https://doi.org/10.1207/s15326934crj1701_4
dc.relationCasudan, E. (1995). Hormones, sex, and status in women. Hormones and Behavior, 29(3), 354–366. https://doi.org/10.1006/hbeh.1995.1025
dc.relationChen, J. L., Penhune, V. B., & Zatorre, R. J. (2008). Listening to Musical Rhythms Recruits Motor Regions of the Brain. Cerebral Cortex, 18(12), 2844–2854. https://doi.org/10.1093/cercor/bhn042
dc.relationChen, J. L., Zatorre, R. J., & Penhune, V. B. (2006). Interactions between auditory and dorsal premotor cortex during synchronization to musical rhythms. NeuroImage, 32(4), 1771–1781. https://doi.org/10.1016/j.neuroimage.2006.04.207
dc.relationCheng, J. T., Tracy, J. L., & Henrich, J. (2010). Pride, personality, and the evolutionary foundations of human social status. Evolution and Human Behavior, 31(5), 334– 347. https://doi.org/10.1016/j.evolhumbehav.2010.02.004
dc.relationChobert, J., & Besson, M. (2013). Musical expertise and second language learning. Brain Sciences, Vol. 3, pp. 923–940. https://doi.org/10.3390/brainsci3020923
dc.relationCirelli, L. K., Einarson, K. M., & Trainor, L. J. (2014). Interpersonal synchrony increases prosocial behavior in infants. Developmental Science, 17(6), 1003–1011. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25513669
dc.relationClark, C. W., & Clapham, P. J. (2004). Acoustic monitoring on a humpback whale (Megaptera novaeangliae) feeding ground shows continual singing into late spring. Proceedings of the Royal Society B: Biological Sciences, 271(1543), 1051–1057. https://doi.org/10.1098/rspb.2004.2699
dc.relationClarke, E., DeNora, T., & Vuoskoski, J. (2015). Music, empathy and cultural understanding. Physics of Life Reviews, 15, 61–88. https://doi.org/10.1016/j.plrev.2015.09.001
dc.relationClayton, M. (2012). What is Entrainment? Definition and applications in musical research. Empirical Musicology Review, 7(1–2), 49–56. https://doi.org/10.18061/1811/52979
dc.relationClayton, M., Sager, R., & Udo, W. (2005). In time with the music : the concept of entrainment and its signicance for ethnomusicology. In European meetings in ethnomusicology (Vol. 11, pp. 1–82). Retrieved from http://dro.dur.ac.uk/8713/1/8713.pdf
dc.relationConard, N. J., Malina, M., & Münzel, S. C. (2009). New flutes document the earliest musical tradition in southwestern Germany. Nature, 460(7256), 737–740. https://doi.org/10.1038/nature08169
dc.relationČrnčec, R., Wilson, S. J., & Prior, M. (2006). The cognitive and academic benefits of music to children: Facts and fiction. Educational Psychology, 26(4), 579–594. https://doi.org/10.1080/01443410500342542
dc.relationCross, I. (2001). Music, cognition, culture, and evolution. Annals of the New York Academy of Sciences, 930, 28–42.
dc.relationCross, I. (2016). The Nature of Music and Its Evolution The Theory of Evolution in 85 Musicological. In S. Hallam, I. Cross, & M. Thaut (Eds.), Oxford Handbooks Online. (pp. 1–20). https://doi.org/10.1093/oxfordhb/9780198722946.013.5
dc.relationCross, I., & Morley, I. (2008). The evolution of music: theories, definitions and the nature of the evidence. In Communicative musicality: Exploring the basis of human companionship (pp. 61–82). Retrieved from http://www.mus.cam.ac.uk/~ic108/PDF/CM_CM08.pdf
dc.relationCrowley, D. J., & Seeger, A. (2006). Nature and Society in Central Brazil: The Suya Indians of Mato Grosso. Ethnomusicology, 27(3), 539. https://doi.org/10.2307/850658
dc.relationDalla Bella, S. (2016). Music and Brain Plasticity. In S. Hallam, I. Cross, & M. Thaut (Eds.), The Oxford Handbook of Music Psychology (2nd ed., pp. 325–342). https://doi.org/10.1093/oxfordhb/9780198722946.013.23
dc.relationDalla Bella, S., Deutsch, D., Giguère, J.-F., Peretz, I., & Deutsch, D. (2007). Singing proficiency in the general population. The Journal of the Acoustical Society of America, 121(2), 1182–1189. https://doi.org/10.1121/1.2427111
dc.relationDarwin, C. (1871). The descent of man, and Selection in relation to sex, Vol 1. https://doi.org/10.1037/12293-000
dc.relationDelsing, M. J. M. H., Ter Bogt, T. F. M., Engels, R. C. M. E., & Meeus, W. H. J. (2008). Adolescents’ music preferences and personality characteristics. European Journal of Personality, 22(2), 109–130. https://doi.org/10.1002/per.665
dc.relationDepue, R. A., & Morrone-Strupinsky, J. V. (2005). A neurobehavioral model of affiliative bonding: Implications for conceptualizing a human trait of affiliation. Behavioral and Brain Sciences, Vol. 28, pp. 313–350. https://doi.org/10.1017/S0140525X05000063
dc.relationDi Pietro, M., Laganaro, M., Leemann, B., & Schnider, A. (2004). Receptive amusia: temporal auditory processing deficit in a professional musician following a left temporo-parietal lesion. Neuropsychologia, 42(7), 868–877.
dc.relationDissanayake, E. (2009). Root, leaf, blossom, or bole: Concerning the origin and adaptive function of music. In S. Malloch & C. Trevarten (Eds.), Communicative musicality: Exploring the basis of human companionship (pp. 17–30). Oxford University Press.
dc.relationDouglas, K. M., & Bilkey, D. K. (2007). Amusia is associated with deficits in spatial processing. Nature Neuroscience, 10(7), 915–921. https://doi.org/10.1038/nn1925
dc.relationDrake, C., & El Heni, J. Ben. (2003). Synchronizing with Music: Intercultural Differences. Annals of the New York Academy of Sciences, 999(1), 429–437. https://doi.org/10.1196/annals.1284.053
dc.relationDufour, V., Pasquaretta, C., Gayet, P., & Sterck, E. H. M. (2017). The extraordinary nature of Barney’s drumming: A complementary study of ordinary noise making in chimpanzees. Frontiers in Neuroscience, 11, 2. https://doi.org/10.3389/fnins.2017.00002
dc.relationDunbar, R. I. M. (1991). Functional Significance of Social Grooming in Primates. Folia Primatologica, 57(3), 121–131. https://doi.org/10.1159/000156574
dc.relationDunbar, R. I. M. (2012). On the Evolutionary Function of Song and Dance. In Music, Language, and Human Evolution (pp. 201–214). https://doi.org/10.1093/acprof:osobl/9780199227341.003.0008
dc.relationDunbar, R. I. M. (2017). Group size, vocal grooming and the origins of language. Psychonomic Bulletin and Review, 24(1), 209–212. https://doi.org/10.3758/s13423- 016-1122-6
dc.relationDunbar, R. I. M., Kaskatis, K., MacDonald, I., & Barra, V. (2012). Performance of music elevates pain threshold and positive affect: Implications for the evolutionary function of music. Evolutionary Psychology, 10(4), 688–702. https://doi.org/10.1177/147470491201000403
dc.relationFalk, D. (2008). Prelinguistic evolution in hominin mothers and babies: For cryin’ out loud! Behavioral and Brain Sciences, 27(4), 461–462. https://doi.org/10.1017/s0140525x04250105
dc.relationFalk, J. L. (1958). The grooming behavior of the chimpanzee as a reinforcer. Journal of the Experimental Analysis of Behavior, 1(1), 83–85. https://doi.org/10.1901/jeab.1958.1-83
dc.relationFancourt, D., & Perkins, R. (2017). Associations between singing to babies and symptoms of postnatal depression, wellbeing, self-esteem and mother-infant bond. Public Health, 145, 149–152. https://doi.org/10.1016/j.puhe.2017.01.016
dc.relationFeldman, R. (2012a). Bio-behavioral Synchrony: A Model for Integrating Biological and Microsocial Behavioral Processes in the Study of Parenting. Parenting, 12(2–3), 154–164. https://doi.org/10.1080/15295192.2012.683342
dc.relationFeldman, R. (2012b). Oxytocin and social affiliation in humans. Hormones and Behavior, Vol. 61, pp. 380–391. https://doi.org/10.1016/j.yhbeh.2012.01.008
dc.relationFeldman, R. (2016). The neurobiology of mammalian parenting and the biosocial context of human caregiving. Hormones and Behavior, 77, 3–17. https://doi.org/10.1016/j.yhbeh.2015.10.001
dc.relationFeldman, R. (2017). The Neurobiology of Human Attachments. Trends in Cognitive Sciences, Vol. 21, pp. 80–99. https://doi.org/10.1016/j.tics.2016.11.007
dc.relationFernald, A., & Kuhl, P. (1987). Acoustic Determinants of Infan
dc.relationFernald, A., & Kuhl, P. (1987). Acoustic Determinants of Infant Preference for Motherese Speech. In Infant behavior and Development (Vol. 10).
dc.relationField, A., & Hole, G. (2002). How to design and report experiments. Sage.
dc.relationFitch, W. T. (2005). The evolution of music in comparative perspective. Annals of the New York Academy of Sciences, 1060(1), 29–49. https://doi.org/10.1196/annals.1360.004
dc.relationFitch, W. T. (2006). The biology and evolution of music: A comparative perspective. Cognition, 100(1), 173–215. https://doi.org/10.1016/j.cognition.2005.11.009
dc.relationFitch, W. T. (2013). Rhythmic cognition in humans and animals: distinguishing meter and pulse perception. Frontiers in Systems Neuroscience, 7, 68. https://doi.org/10.3389/fnsys.2013.00068
dc.relationFitch, W. T. (2015). Four principles of bio-musicology. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1664), 20140091. https://doi.org/10.1098/rstb.2014.0091
dc.relationFodor, J. A. (1983). The modularity of mind : an essay on faculty psychology. MIT Press
dc.relationFodor, J. A. (1985). Précis of The Modularity of Mind. Behavioral and Brain Sciences, 8(1), 1–5. https://doi.org/10.1017/S0140525X0001921X
dc.relationFormann, W., & Piswanger, J. (1979). Wiener Matrizen Test. Ein Rasch-skalieter sprachfreier Intelligenztest. Weinheim: Beltz Test,.
dc.relationFormann, W., & Piswanger, J. (1979). Wiener Matrizen Test. Ein Rasch-skalieter sprachfreier Intelligenztest. Weinheim: Beltz Test,.
dc.relationFoxton, J. M., Nandy, R. K., & Griffiths, T. D. (2006). Rhythm deficits in ‘tone deafness.’ Brain and Cognition, 62(1), 24–29. https://doi.org/10.1016/j.bandc.2006.03.005
dc.relationFriederici, A. D. (2011). The Brain Basis of Language Processing: From Structure to Function. Physiological Reviews, 91(4), 1357–1392. https://doi.org/10.1152/physrev.00006.2011
dc.relationFritz, T., Jentschke, S., Gosselin, N., Sammler, D., Peretz, I., Turner, R., … Koelsch, S. (2009). Universal Recognition of Three Basic Emotions in Music. Current Biology, 19(7), 573–576. https://doi.org/10.1016/j.cub.2009.02.058
dc.relationFrost, C., Sauter, D. A., Gordon, E., Omar, R., Hailstone, J. C., Bartlett, J. W., … Scott, S. K. (2011). The structural neuroanatomy of music emotion recognition: Evidence from frontotemporal lobar degeneration. NeuroImage, 56(3), 1814–1821. https://doi.org/10.1016/j.neuroimage.2011.03.002
dc.relationFukui, H. (2001). Music and Testosterone. Annals of the New York Academy of Sciences, 930(1), 448–451. https://doi.org/10.1111/j.1749-6632.2001.tb05767.x
dc.relationFundation Sing up. (2011). Synthesis Report: Sing Up 2007-2011 Programme Evaluation. Retrieved from www.singup.org
dc.relationGarcía-Casares, N., Berthier Torres, M. L., Froudist Walsh, S., & González-Santos, P. (2013). Modelo de cognición musical y amusia. Neurologia, 28(3), 179–186. https://doi.org/10.1016/j.nrl.2011.04.010
dc.relationGarland, E. C., Goldizen, A. W., Rekdahl, M. L., Constantine, R., Garrigue, C., Hauser, N. D., … Noad, M. J. (2011). Dynamic horizontal cultural transmission of humpback whale song at the ocean basin scale. Current Biology, 21(8), 687–691. https://doi.org/10.1016/j.cub.2011.03.019
dc.relationGaser, C., & Schlaug, G. (2003). Brain structures differ between musicians and nonmusicians. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 23(27), 9240–9245. https://doi.org/10.1523/JNEUROSCI.23-27- 09240.2003
dc.relationGingras, B., Honing, H., Peretz, I., Trainor, L. J., & Fisher, S. E. (2015). Defining the biological bases of individual differences in musicality. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1664). https://doi.org/10.1098/rstb.2014.0092
dc.relationGodwin, J., & Blacking, J. (2006). How Musical Is Man? Notes, 31(1), 41. https://doi.org/10.2307/895922
dc.relationGosselin, N. (2005). Impaired recognition of scary music following unilateral temporal lobe excision. Brain, 128(3), 628–640. https://doi.org/10.1093/brain/awh420
dc.relationGosselin, N. (2006). Emotional responses to unpleasant music correlates with damage to the parahippocampal cortex. Brain, 129(10), 2585–2592. https://doi.org/10.1093/brain/awl240
dc.relationGosselin, N., Paquette, S., & Peretz, I. (2015). Sensitivity to musical emotions in congenital amusia. Cortex, 71, 171–182. https://doi.org/10.1016/j.cortex.2015.06.022
dc.relationGosselin, N., Peretz, I., Johnsen, E., & Adolphs, R. (2007). Amygdala damage impairs emotion recognition from music. Neuropsychologia, 45(2), 236–244. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2006.07.012
dc.relationGrahn, J. A. (2012). Neural Mechanisms of Rhythm Perception: Current Findings and Future Perspectives. Topics in Cognitive Science, 4(4), 585–606. https://doi.org/10.1111/j.1756-8765.2012.01213.x
dc.relationGrahn, J. A., & Rowe, J. B. (2013). Finding and Feeling the Musical Beat: Striatal Dissociations between Detection and Prediction of Regularity. Cerebral Cortex, 23(4), 913–921. https://doi.org/10.1093/cercor/bhs083
dc.relationGrebosz-Haring, K., & Thun-Hohenstein, L. (2018). Effects of group singing versus group music listening on hospitalized children and adolescents with mental disorders: A pilot study. Heliyon, 4(12), e01014. https://doi.org/10.1016/j.heliyon.2018.e01014
dc.relationGrube, M., & Griffiths, T. D. (2009). Metricality-enhanced temporal encoding and the subjective perception of rhythmic sequences. Cortex, 45(1), 72–79. https://doi.org/10.1016/j.cortex.2008.01.006
dc.relationHaesler, S. (2004). FoxP2 Expression in Avian Vocal Learners and Non-Learners. Journal of Neuroscience, 24(13), 3164–3175. https://doi.org/10.1523/JNEUROSCI.4369-03.2004
dc.relationHallam, S. (2010). The power of music: Its impact on the intellectual, social and personal development of children and young people. International Journal of Music Education, Vol. 28, pp. 269–289. https://doi.org/10.1177/0255761410370658
dc.relationHansen, M., Wallentin, M., & Vuust, P. (2013). Working memory and musical 91 competence of musicians and non-musicians. Psychology of Music, 41(6), 779– 793. https://doi.org/10.1177/0305735612452186
dc.relationHasegawa, A., Okanoya, K., Hasegawa, T., & Seki, Y. (2011). Rhythmic synchronization tapping to an audio-visual metronome in budgerigars. Scientific Reports, 1, 120. https://doi.org/10.1038/srep00120
dc.relationHattori, Y., Tomonaga, M., & Matsuzawa, T. (2013). Spontaneous synchronized tapping to an auditory rhythm in a chimpanzee. Scientific Reports, 3. https://doi.org/10.1038/srep01566
dc.relationHerdener, M., Esposito, F., di Salle, F., Boller, C., Hilti, C. C., Habermeyer, B., … Cattapan-Ludewig, K. (2010). Musical Training Induces Functional Plasticity in Human Hippocampus. Journal of Neuroscience, 30(4), 1377–1384. https://doi.org/10.1523/JNEUROSCI.4513-09.2010
dc.relationHerholz, S. C., & Zatorre, R. J. (2012). Musical Training as a Framework for Brain Plasticity: Behavior, Function, and Structure. Neuron, 76(3), 486–502. https://doi.org/10.1016/j.neuron.2012.10.011
dc.relationHilliard, R. E. (2007). The effects of orff-based music therapy and social work groups on childhood grief symptoms and behaviors. Journal of Music Therapy, 44(2), 123– 138. Retrieved from http://jmt.oxfordjournals.org/
dc.relationHoelzel, A. R. (2009). Marine mammal biology : an evolutionary approach (A. R. Hoelzel, Ed.). Blackwell Science.
dc.relationHoeschele, M., Merchant, H., Kikuchi, Y., Hattori, Y., & ten Cate, C. (2015). Searching for the origins of musicality across species. Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 370, pp. 20140094–20140094. https://doi.org/10.1098/rstb.2014.0094
dc.relationHoning, H. (2012). Without it no music: Beat induction as a fundamental musical trait. Annals of the New York Academy of Sciences, 1252(1), 85–91.
dc.relationHoning, Henkjan. (2018). The origins of musicality. ILLC (FGw), Language and Computation, Brain and Cognition, ILLC (FNWI/FGw).
dc.relationHoning, Henkjan, ten Cate, C., Peretz, I., & Trehub, S. E. (2015). Without it no music: Cognition, biology and evolution of musicality. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1664). https://doi.org/10.1098/rstb.2014.0088
dc.relationHopkins, M. T. (2015). Collaborative composing in high school string chamber music ensembles. Journal of Research in Music Education, 62(4), 405–424. https://doi.org/10.1177/0022429414555135
dc.relationHsieh, S., Hornberger, M., Piguet, O., & Hodges, J. R. (2012). Brain correlates of musical and facial emotion recognition: Evidence from the dementias. Neuropsychologia, 50(8), 1814–1822. https://doi.org/10.1016/j.neuropsychologia.2012.04.006
dc.relationHucklebridge, F., Lambert, S., Clow, A., Warburton, D. M., Evans, P. D., & Sherwood, N. (2000). Modulation of secretory immunoglobulin A in saliva; response to manipulation of mood. Biological Psychology, 53(1), 25–35. https://doi.org/10.1016/S0301-0511(00)00040-5
dc.relationHuron, D. (2001). Is Music an Evolutionary Adaptation? Annals of the New York Academy of Sciences, 930(1), 43–61.
dc.relationHyde, K. L., & Peretz, I. (2004). Brains That Are out of Tune but in time. Psychological Science, 15(5), 356–360. https://doi.org/10.1111/j.0956-7976.2004.00683.x
dc.relationInoue, Y., Takahashi, T., Burriss, R. P., Arai, S., Hasegawa, T., Yamagishi, T., & Kiyonari, T. (2017). Testosterone promotes either dominance or submissiveness in the Ultimatum Game depending on players’ social rank. Scientific Reports, 7(1), 5335. https://doi.org/10.1038/s41598-017-05603-7
dc.relationJ. Trost, W., Labbé, C., & Grandjean, D. (2017). Rhythmic entrainment as a musical affect induction mechanism. Neuropsychologia, Vol. 96, pp. 96–110. https://doi.org/10.1016/j.neuropsychologia.2017.01.004
dc.relationJäncke, L. (2009). Music drives brain plasticity. F1000 Biology Reports, 1, 78. https://doi.org/10.3410/B1-78
dc.relationJiang, C., Hamm, J. P., Lim, V. K., Kirk, I. J., Chen, X., & Yang, Y. (2012). Amusia Results in Abnormal Brain Activity following Inappropriate Intonation during Speech Comprehension. PLoS ONE, 7(7), e41411. https://doi.org/10.1371/journal.pone.0041411
dc.relationJiang, C., Liu, F., & Wong, P. C. M. (2017). Sensitivity to musical emotion is influenced by tonal structure in congenital amusia. Scientific Reports, 7(1), 7624. https://doi.org/10.1038/s41598-017-08005-x
dc.relationJustus, T., & Hutsler, J. J. (2005). Fundamental issues in the evolutionary psychology of music:: Assessing Innateness and Domain Specificity. Music Perception, 23(1), 1– 27. https://doi.org/10.1525/mp.2005.23.1.1
dc.relationKarageorghis, C. I., & Terry, P. C. (2012). Chapter 1 - The psychological, psychophysical and ergogenic effects of music in sport: A review and synthesis. In Sporting Sounds: Relationships Between Sport and Music (Vol. 1, pp. 13–36). https://doi.org/10.4324/9780203887974
dc.relationKawase, S., & Ogawa, J. (2018). Group music lessons for children aged 1–3 improve accompanying parents’ moods. Psychology of Music, 1, 11. https://doi.org/10.1177/0305735618803791
dc.relationKeeler, J. R., Roth, E. A., Neuser, B. L., Spitsbergen, J. M., Waters, D. J. M., & Vianney, J.-M. (2015). The neurochemistry and social flow of singing: bonding and oxytocin. Frontiers in Human Neuroscience, 9. https://doi.org/10.3389/fnhum.2015.00518
dc.relationKhalfa, S., Guye, M., Peretz, I., Chapon, F., Girard, N., Chauvel, P., & Liégeois-Chauvel, C. (2008). Evidence of lateralized anteromedial temporal structures involvement in musical emotion processing. Neuropsychologia, 46(10), 2485–2493. https://doi.org/10.1016/j.neuropsychologia.2008.04.009
dc.relationKiebel, S. J., Daunizeau, J., & Friston, K. J. (2008). A Hierarchy of Time-Scales and the Brain. PLoS Computational Biology, 4(11), e1000209. https://doi.org/10.1371/journal.pcbi.1000209
dc.relationKirschner, S., & Tomasello, M. (2009). Joint drumming: Social context facilitates synchronization in preschool children. Journal of Experimental Child Psychology, 102(3), 299–314. https://doi.org/10.1016/j.jecp.2008.07.005
dc.relationKirschner Sebastian, S., & Tomasello, M. (2010). Joint music making promotes prosocial behavior in 4-year-old children. Evolution and Human Behavior, 31(5), 354–364. https://doi.org/10.1016/j.evolhumbehav.2010.04.004
dc.relationKoechlin, E., & Jubault, T. (2006). Broca’s Area and the Hierarchical Organization of Human Behavior. Neuron, 50(6), 963–974. https://doi.org/10.1016/j.neuron.2006.05.017
dc.relationKoelsch, S. (2010). Towards a neural basis of music-evoked emotions. Trends in Cognitive Sciences, 14(3), 131–137. https://doi.org/10.1016/j.tics.2010.01.002
dc.relationKoelsch, S. (2012). Music and language. In Brain and music (p. 308). Wiley-Blackwell.
dc.relationKonoike, N., Kotozaki, Y., Jeong, H., Miyazaki, A., Sakaki, K., Shinada, T., … Nakamura, K. (2015). Temporal and Motor Representation of Rhythm in FrontoParietal Cortical Areas: An fMRI Study. PLOS ONE, 10(6), e0130120. https://doi.org/10.1371/journal.pone.0130120
dc.relationKrebs, J. R., & Kroodsma, D. E. (1980). Repertoires and Geographical Variation in Bird Song. Advances in the Study of Behavior, 11, 143–177. https://doi.org/10.1016/S0065-3454(08)60117-5
dc.relationKreutz, G. (2014). Does Singing Facilitate Social Bonding? Music and Medicine, 6(2), 51–60.
dc.relationKreutz, G., Bongard, S., Rohrmann, S., Hodapp, V., & Grebe, D. (2004). Effects of Choir Singing or Listening on Secretory Immunoglobulin A, Cortisol, and Emotional State. Journal of Behavioral Medicine, 27(6), 623–635. https://doi.org/10.1007/s10865- 004-0006-9
dc.relationKuck, H., Grossbach, M., Bangert, M., & Altenmüller, E. (2003). Brain processing of meter and rhythm in music. Electrophysiological evidence of a common network. Annals of the New York Academy of Sciences, 999, 244–253.
dc.relationLappe, C., Herholz, S. C., Trainor, L. J., & Pantev, C. (2008). Cortical Plasticity Induced by Short-Term Unimodal and Multimodal Musical Training. Journal of Neuroscience, 28(39), 9632–9639. https://doi.org/10.1523/jneurosci.2254-08.2008
dc.relationLarge, E. W., & Gray, P. M. (2015). Supplemental Material for Spontaneous Tempo and Rhythmic Entrainment in a Bonobo (Pan paniscus). Journal of Comparative Psychology, 129(4), 317. https://doi.org/10.1037/com0000011.supp
dc.relationLaunay, J., Dean, R. T., & Bailes, F. (2013). Synchronization can influence trust following virtual interaction. Experimental Psychology, 60(1), 53–63. https://doi.org/10.1027/1618-3169/a000173
dc.relationLehmann, J., Korstjens, A. H., & Dunbar, R. I. M. (2007). Group size, grooming and social cohesion in primates. Animal Behaviour, 74(6), 1617–1629. https://doi.org/10.1016/j.anbehav.2006.10.025
dc.relationLeongómez, J. D. (2015). La música como objeto de estudio científico: consideraciones en torno a la musicalidad y el origen de la música. (Pensamiento), (Palabra) y Obra, 96 13(13), 77–86. https://doi.org/10.17227/2011804X.15PPO77.86
dc.relationLeongómez, J. D., Binter, J., Kubicová, L., Stolařová, P., Klapilová, K., Havlíček, J., & Roberts, S. C. (2014). Vocal modulation during courtship increases proceptivity even in naive listeners. Evolution and Human Behavior, 35(6), 489–496. https://doi.org/10.1016/j.evolhumbehav.2014.06.008
dc.relationLévi-Strauss, C. (1958). Anthropologie structurale. Population (French Edition), 13(3), 527–528. https://doi.org/10.2307/1525444
dc.relationLima, C. F., Brancatisano, O., Fancourt, A., Müllensiefen, D., Scott, S. K., Warren, J. D., & Stewart, L. (2016). Impaired socio-emotional processing in a developmental music disorder. Scientific Reports, 6(1), 34911. https://doi.org/10.1038/srep34911
dc.relationLolli, S. L., Lewenstein, A. D., Basurto, J., Winnik, S., & Loui, P. (2015). Sound frequency affects speech emotion perception: results from congenital amusia. Frontiers in Psychology, 6, 1340. https://doi.org/10.3389/fpsyg.2015.01340
dc.relationLortat-Jacob, B., & Bernard. (2004). Ce que chanter veut dire. L’Homme. Revue Française d’anthropologie, (171–172), 83–101. https://doi.org/10.4000/lhomme.24862
dc.relationLove, T. M. (2014). Oxytocin, motivation and the role of dopamine. Pharmacology Biochemistry and Behavior, 119, 49–60. https://doi.org/10.1016/j.pbb.2013.06.011
dc.relationLu, X., Ho, H. T., Liu, F., Wu, D., & Thompson, W. F. (2015). Intonation processing deficits of emotional words among Mandarin Chinese speakers with congenital amusia: an ERP study. Frontiers in Psychology, 6, 385. https://doi.org/10.3389/fpsyg.2015.00385
dc.relationLucas, G., Clayton, M., & Leante, L. (2017). Inter-group entrainment in Afro-Brazilian Congado ritual. Empirical Musicology Review, 6(2), 75–102. https://doi.org/10.18061/1811/51203
dc.relationLudke, K. M., Ferreira, F., & Overy, K. (2014). Singing can facilitate foreign language learning. Memory and Cognition, 42(1), 41–52. https://doi.org/10.3758/s13421-013- 0342-5
dc.relationManer, J. K. (2017). Dominance and prestige: A tale of two hierarchies. Current Directions in Psychological Science, Vol. 26, pp. 526–531. https://doi.org/10.1177/0963721417714323
dc.relationMarcus, G. F. (2012). Musicality: Instinct or Acquired Skill? Topics in Cognitive Science, 4(4), 498–512. https://doi.org/10.1111/j.1756-8765.2012.01220.x
dc.relationMarek, S., & Dosenbach, N. U. F. (2018). The frontoparietal network: function, electrophysiology, and importance of individual precision mapping. Dialogues in Clinical Neuroscience, 20(2), 133–140.
dc.relationMarin, M. M., Thompson, W. F., Gingras, B., & Stewart, L. (2015). Affective evaluation of simultaneous tone combinations in congenital amusia. Neuropsychologia, 78, 207– 220. https://doi.org/10.1016/j.neuropsychologia.2015.10.004
dc.relationMarler, P. (2001). Origins of music and speech: Insights from animals. In The origins of music (pp. 31–48).
dc.relationMartínez C, M. (2017). Música y movimiento en Educación Infantil (pp. 1–35). pp. 1–35. Retrieved from http://digibug.ugr.es/bitstream/handle/10481/45895/MartinezCotes_TFGMusicaMotr icidad.pdf?sequence=1
dc.relationMatheson, M. D., & Bernstein, I. S. (2000). Grooming, social bonding, and agonistic aiding in rhesus monkeys. American Journal of Primatology, 51(3), 177–186. https://doi.org/10.1002/1098-2345(200007)51:3<177::AID-AJP2>3.0.CO;2-K
dc.relationMathias, B., Lidji, P., Honing, H., Palmer, C., & Peretz, I. (2016). Electrical Brain Responses to Beat Irregularities in Two Cases of Beat Deafness. Frontiers in Neuroscience, 10, 40. https://doi.org/10.3389/fnins.2016.00040
dc.relationMatthews, W. K., & Kitsantas, A. (2007). Group cohesion, collective efficacy, and motivational climate as predictors of conductor support in music ensembles. Journal of Research in Music Education, 55(1), 6–17. https://doi.org/10.1177/002242940705500102
dc.relationMcAdams, S. (2013). Musical Timbre Perception. The Psychology of Music, 35–67. https://doi.org/10.1016/B978-0-12-381460-9.00002-X
dc.relationMcDermott, J. H., Lehr, A. J., & Oxenham, A. J. (2008). Is relative pitch specific to pitch? Psychological Science, 19(12), 1263–1271. https://doi.org/10.1111/j.1467- 9280.2008.02235.x
dc.relationMcFerran, K. S., & Wölfl, A. (2015). Music, Violence and Music Therapy with Young People in Schools: A position paper A Brief History of Music and Violence. Voices: A World Forum for Music The, 15(2). Retrieved from https://www.youtube.com/watch?v=lKpLckW
dc.relationMehr, S., Singh, M., Knox, D., Lucas, C., Ketter, D., Pickens-Jones, D., … Glowacki, L. (2018). A natural history of song. PsyArXiv Preprints.
dc.relationMeister, I. G., Boroojerdi, B., Foltys, H., Sparing, R., Huber, W., & Töpper, R. (2003). Motor cortex hand area and speech: implications for the development of language. Neuropsychologia, 41(4), 401–406.
dc.relationMerker, B. H., Madison, G. S., & Eckerdal, P. (2009). On the role and origin of isochrony in human rhythmic entrainment. Cortex, 45(1), 4–17. https://doi.org/10.1016/j.cortex.2008.06.011
dc.relationMiller, G. F. (2001). Evolution of Human Music through Sexual Selection. The Origins of Music, 329–360. https://doi.org/10.7551/mitpress/5190.003.0025
dc.relationMiller, K. J., Foster, B. L., & Honey, C. J. (2012). Does rhythmic entrainment represent a generalized mechanism for organizing computation in the brain? Frontiers in
dc.relationMitterschiffthaler, M. T., Fu, C. H. Y., Dalton, J. A., Andrew, C. M., & Williams, S. C. R. (2007). A functional MRI study of happy and sad affective states induced by classical music. Human Brain Mapping, 28(11), 1150–1162. https://doi.org/10.1002/hbm.20337
dc.relationMorton, D., & Malm, W. P. (2006). Music Cultures of the Pacific, the Near East, and Asia. Ethnomusicology, 12(1), 140. https://doi.org/10.2307/850562
dc.relationMosing, M. A., Verweij, K. J. H., Madison, G., Pedersen, N. L., Zietsch, B. P., & Ullén, F. (2015). Did sexual selection shape human music? Testing predictions from the sexual selection hypothesis of music evolution using a large genetically informative sample of over 10,000 twins. Evolution and Human Behavior, 36(5), 359–366. https://doi.org/10.1016/j.evolhumbehav.2015.02.004
dc.relationMüller, F. “Floyd,” Agamanolis, S., & Picard, R. (2003). Exertion interfaces: sports over a distance for social bonding and fun. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems - CHI’03, 561–568. https://doi.org/10.1145/642611.642709
dc.relationMünte, T. F., Altenmüller, E., & Jäncke, L. (2002). The musician’s brain as a model of neuroplasticity. Nature Reviews Neuroscience, 3(6), 473–478. https://doi.org/10.1038/nrn843
dc.relationNoad, M. J., Cato, D. H., Bryden, M. M., Jenner, M.-N., & Jenner, K. C. S. (2000). Cultural revolution in whale songs. Nature, 408(6812), 537–537. https://doi.org/10.1038/35046199
dc.relationNorth, A. C., & Hargreaves, D. J. (1999). Music and Adolescent Identity. Music Education Research, 1(1), 75–92. https://doi.org/10.1080/1461380990010107
dc.relationNorth, A. C., Hargreaves, D. J., & O’Neill, S. A. (2000). The importance of music to adolescents. British Journal of Educational Psychology, 70(2), 255–272. 100 https://doi.org/10.1348/000709900158083
dc.relationNowicki, S., & Marler, P. (1988). How do birds sing? Music Perception: An Interdisciplinary Journal, 5(4), 391–426.
dc.relationNozaradan, S. (2014). Exploring how musical rhythm entrains brain activity with electroencephalogram frequency-tagging. Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 369, pp. 20130393–20130393. https://doi.org/10.1098/rstb.2013.0393
dc.relationNunes Silva, M., & Geraldi Haase, V. (2013). Amusias and modularity of musical cognitive processing. Psychology and Neuroscience, 6(1), 45–56. https://doi.org/10.3922/j.psns.2013.1.08
dc.relationO’Neill, C. T., Trainor, L. J., & Trehub, S. E. (2001). Infants’ Responsiveness to Fathers’ Singing. Music Perception, 18(4), 409–425. https://doi.org/10.1525/mp.2001.18.4.409
dc.relationObleser, J., & Eisner, F. (2009). Pre-lexical abstraction of speech in the auditory cortex. Trends in Cognitive Sciences, 13(1), 14–19. https://doi.org/10.1016/j.tics.2008.09.005
dc.relationPatel, A. D. (2010). Music, biological evolution, and the brain. In Vesicle.Nsi.Edu.
dc.relationPatel, A. D. (2014). The Evolutionary Biology of Musical Rhythm: Was Darwin Wrong? PLoS Biology, 12(3). https://doi.org/10.1371/journal.pbio.1001821
dc.relationPearce, E., Launay, J., Van Duijn, M., Rotkirch, A., David-Barrett, T., & Dunbar, R. I. M. (2016). Singing together or apart: The effect of competitive and cooperative singing on social bonding within and between sub-groups of a university Fraternity. Psychology of Music, 44(6), 1255–1273. https://doi.org/10.1177/0305735616636208
dc.relationPerani, D., Saccuman, M. C., Scifo, P., Spada, D., Andreolli, G., Rovelli, R., … Koelsch, 101 S. (2010). Functional specializations for music processing in the human newborn brain. Proceedings of the National Academy of Sciences, 107(10), 4758–4763. https://doi.org/10.1073/pnas.0909074107
dc.relationPeretz, I. (1990). Processing of local and global musical information by unilateral braindamaged patients. Brain : A Journal of Neurology, 113 ( Pt 4, 1185–1205.
dc.relationPeretz, I. (2006). The nature of music from a biological perspective. Cognition, 100(1), 1–32. https://doi.org/10.1016/j.cognition.2005.11.004
dc.relationPeretz, I. (2009). Music, Language and Modularity Framed in Action. Psychologica Belgica, 49(2–3), 157. https://doi.org/10.5334/pb-49-2-3-157
dc.relationPeretz, I. (2016). Neurobiology of Congenital Amusia. Trends in Cognitive Sciences, 20(11), 857–867. https://doi.org/10.1016/j.tics.2016.09.002
dc.relationPeretz, I., Ayotte, J., Zatorre, R. J., Mehler, J., Ahad, P., Penhune, V. B., & Jutras, B. (2002). Congenital Amusia: A disorder of fine-grained pitch discrimination. Neuron, 33(2), 185–191. https://doi.org/10.1016/S0896-6273(01)00580-3
dc.relationPeretz, I., & Coltheart, M. (2003). Modularity of music processing. Nature Neuroscience, Vol. 6, pp. 688–691. https://doi.org/10.1038/nn1083
dc.relationPeretz, I., Cummings, S., & Dubé, M.-P. (2007). The Genetics of Congenital Amusia (Tone Deafness): A Family-Aggregation Study. The American Journal of Human Genetics, 81(3), 582–588. https://doi.org/10.1086/521337
dc.relationPeretz, I., & Hyde, K. L. (2003). What is specific to music processing? Insights from congenital amusia. Trends in Cognitive Sciences, 7(8), 362–367. https://doi.org/10.1016/S1364-6613(03)00150-5
dc.relationPfeifer, J., & Hamann, S. (2018). The Nature and Nurture of Congenital Amusia: A Twin Case Study. Frontiers in Behavioral Neuroscience, 12, 120. https://doi.org/10.3389/fnbeh.2018.00120
dc.relationPhillips-Silver, J., Aktipis, C. A., & Bryant, G. A. (2010). The ecology of entrainment: Foundations of coordinated rhythmic movement. Music Perception, 28(1), 3–14. https://doi.org/10.1525/mp.2010.28.1.3
dc.relationPhillips-Silver, J., Toiviainen, P., Gosselin, N., Piché, O., Nozaradan, S., Palmer, C., & Peretz, I. (2011). Born to dance but beat deaf: A new form of congenital amusia. Neuropsychologia, 49(5), 961–969. https://doi.org/10.1016/j.neuropsychologia.2011.02.002
dc.relationPinker, S. (1997). How the mind works (Vol. 35). W. W. Norton & Company.
dc.relationPinker, S. (1998). How the mind works. London: Penguin Books.
dc.relationPinker, S. (2007). Toward a consilient study of literature. Philosophy and Literature, 31(1), 162–178. https://doi.org/10.1353/phl.2007.0016
dc.relationPorter, J., Blacking, J., & Byron, R. (2006). Music, Culture and Experience: Selected Papers of John Blacking. Western Folklore, 55(2), 163. https://doi.org/10.2307/1500182
dc.relationRabinowitch, T. C., Cross, I., & Burnard, P. (2013). Long-term musical group interaction has a positive influence on empathy in children. Psychology of Music, 41(4), 484– 498. https://doi.org/10.1177/0305735612440609
dc.relationRacette, A., Bard, C., & Peretz, I. (2006). Making non-fluent aphasics speak: Sing along! Brain, 129(10), 2571–2584. https://doi.org/10.1093/brain/awl250
dc.relationRappoport, D., & Dana. (2004). Musique et morphologie rituelle. Chez les Toraja d’Indonésie. L’Homme. Revue Française d’anthropologie, (171–172), 197–218. https://doi.org/10.4000/lhomme.24892
dc.relationRauschecker, J. P., Friederici, A. D., & Wise, R. J. S. (2012). Ventral and dorsal streams in the evolution of speech and language. https://doi.org/10.3389/fnevo.2012.00007
dc.relationRivers, J. W., & Kroodsma, D. E. (2000). Singing Behavior of the Hermit Thrush. Journal 103 of Field Ornithology, 71(3), 467–471. https://doi.org/10.1648/0273-8570-71.3.467
dc.relationRodrigues, A. C., Loureiro, M., & Caramelli, P. (2014). Visual memory in musicians and non-musicians. Frontiers in Human Neuroscience, 8, 424. https://doi.org/10.3389/fnhum.2014.00424
dc.relationRouget, G. (2004). L’efficacité musicale: musiquer pour survivre. Le cas des Pygmées. L’Homme. Revue Française d’anthropologie, (171–172), 27–52. https://doi.org/10.4000/lhomme.24855
dc.relationRouse, A. A., Cook, P. F., Large, E. W., & Reichmuth, C. (2016). Beat keeping in a sea lion as coupled oscillation: Implications for comparative understanding of human rhythm. Frontiers in Neuroscience, 10, 256. https://doi.org/10.3389/fnins.2016.00257
dc.relationSaarikallio, S., & Erkkilä, J. (2007). The role of music in adolescents’ mood regulation. Psychology of Music, 35(1), 88–109. https://doi.org/10.1177/0305735607068889
dc.relationSalimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A., & Zatorre, R. J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 14(2), 257–262. https://doi.org/10.1038/nn.2726
dc.relationSalmon, S. (2012). Musica humana: Thoughts on humanistic aspects of Orff-Schulwerk. Orff Schulwerk Informationen, 87, 13–19
dc.relationSammler, D. (2018). The Melodic Mind: Neural bases of intonation in speech and music.
dc.relationSchachner, A., Brady, T. F., Pepperberg, I. M., & Hauser, M. D. (2009). Spontaneous Motor Entrainment to Music in Multiple Vocal Mimicking Species. Current Biology, 19(10), 831–836. https://doi.org/10.1016/j.cub.2009.03.061
dc.relationSchaller, G. B. (1963). The mountain gorilla Chicago. Univ. Chicago Press.
dc.relationSchladt, T. M., Nordmann, G. C., Emilius, R., Kudielka, B. M., de Jong, T. R., & 104 Neumann, I. D. (2017). Choir versus Solo Singing: Effects on M
dc.relationNeumann, I. D. (2017). Choir versus Solo Singing: Effects on Mood, and Salivary Oxytocin and Cortisol Concentrations. Frontiers in Human Neuroscience, 11, 430. https://doi.org/10.3389/fnhum.2017.00430
dc.relationSchlaug, G. (2015). Musicians and music making as a model for the study of brain plasticity. Progress in Brain Research, 217, 37–55. https://doi.org/10.1016/bs.pbr.2014.11.020
dc.relationSchlaug, G., Marchina, S., & Norton, A. (2008). From Singing to Speaking: Why Singing May Lead to Recovery of Expressive Language Function in Patients with Broca’s Aphasia. Music Perception, 25(4), 315–323. https://doi.org/10.1525/MP.2008.25.4.315
dc.relationSchögler, B. (1998). Music as a tool in communications research. Nordisk Tidsskrift for Musikkterapi, 7(1), 40–49. https://doi.org/10.1080/08098139809477919
dc.relationSchuppert, M., Münte, T. F., Wieringa, B. M., & Altenmüller, E. (2000). Receptive amusia: evidence for cross-hemispheric neural networks underlying music processing strategies. Brain, 123(3), 546–559. https://doi.org/10.1093/brain/123.3.546
dc.relationSeeger, A. (2017). Chanter l’identité. L’Homme. Revue Française d’anthropologie, (171– 172), 135–150. https://doi.org/10.4000/lhomme.24877
dc.relationSmith, J. N., Goldizen, A. W., Dunlop, R. A., & Noad, M. J. (2008). Songs of male humpback whales, Megaptera novaeangliae, are involved in intersexual interactions. Animal Behaviour, 76(2), 467–477. https://doi.org/10.1016/J.ANBEHAV.2008.02.013
dc.relationSparks, R., Helm, N., & Albert, M. (1974). Aphasia rehabilitation resulting from melodic intonation therapy. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 10(4), 303–316.
dc.relationStainsby, T., & Cross, I. (2012). The perception of pitch (Vol. 1; S. Hallam, I. Cross, & M. 105 Thaut, Eds.). https://doi.org/10.1093/oxfordhb/9780199298457.013.0005
dc.relationSteinthal, H. (1881). Einleitung in die Psychologie und Sprachwissenschaft.
dc.relationSue Carter, C. (1998). Neuroendocrine perspectives on social attachment and love. Psychoneuroendocrinology, 23(8), 779–818. https://doi.org/10.1016/S0306- 4530(98)00055-9
dc.relationSullivan, P., & Rickers, K. (2013). The effect of behavioral synchrony in groups of teammates and strangers. International Journal of Sport and Exercise Psychology, 11(3), 286–291. https://doi.org/10.1080/1612197X.2013.750139
dc.relationSuzuki, M., Kanamori, M., Watanabe, M., Nagasawa, S., Kojima, E., Ooshiro, H., & Nakahara, D. (2004). Behavioral and endocrinological evaluation of music therapy for elderly patients with dementia. Nursing and Health Sciences, 6(1), 11–18. https://doi.org/10.1111/j.1442-2018.2003.00168.x
dc.relationTalamini, F., Carretti, B., & Grassi, M. (2016). The Working Memory of Musicians and Nonmusicians. Music Perception: An Interdisciplinary Journal, 34(2), 183–191. https://doi.org/10.1525/mp.2016.34.2.183
dc.relationTattersall, I. (2006). The Singing Neanderthals: The Origins of Music, Language, Mind and Body. In The Quarterly Review of Biology (Vol. 81, pp. 425–425). https://doi.org/10.1086/511618
dc.relationTattersall, I. (2006). The Singing Neanderthals: The Origins of Music, Language, Mind and Body. In The Quarterly Review of Biology (Vol. 81, pp. 425–425). https://doi.org/10.1086/511618
dc.relationTeramitsu, I., & White, S. A. (2006). FoxP2 Regulation during Undirected Singing in Adult Songbirds. Journal of Neuroscience, 26(28), 7390–7394. https://doi.org/10.1523/jneurosci.1662-06.2006
dc.relationTheorell, T. (2014). Music in Social Cohesion. In Psychological Health Effects of Musical Experiences (pp. 17–27). https://doi.org/10.1007/978-94-017-8920-2_3
dc.relationThorpe, L. A., & Cohen, A. J. (2007). The origins of musicality. Infant Behavior and Development, 7, 363. https://doi.org/10.1016/s0163-6383(84)80425-7
dc.relationTomasello, M., & Carpenter, M. (2007). Shared intentionality. Developmental Science, 10(1), 121–125. https://doi.org/10.1111/j.1467-7687.2007.00573.x
dc.relationTomasello, M., Carpenter, M., Call, J., Behne, T., & Moll, H. (2005). Understanding and sharing intentions: The origins of cultural cognition. Behavioral and Brain Sciences, 28(5), 675–691. https://doi.org/10.1017/S0140525X05000129
dc.relationTrainor, L. J., Austin, C. M., & Desjardins, R. N. (2000). Is infant-directed speech prosody a result of the vocal expression of emotion? Psychological Science, 11(3), 188–195. https://doi.org/10.1111/1467-9280.00240
dc.relationTrehub, S. E. (2001). Human processing predispositions and musical universals. In The origins of music. (pp. 427–448).
dc.relationTrehub, S. E. (2003). The developmental origins of musicality. Nature Neuroscience, Vol. 6, pp. 669–673. https://doi.org/10.1038/nn1084
dc.relationTrehub, S. E. (2018). Human Processing Predispositions and Musical Universals. In B. M. & S. B. N. L. Wallin (Ed.), The Origins of Music (pp. 427–448). https://doi.org/10.7551/mitpress/5190.003.0030
dc.relationTrehub, S. E., Plantinga, J., Brcic, J., & Nowicki, M. (2013). Cross-modal signatures in maternal speech and singing. Frontiers in Psychology, 4, 811. https://doi.org/10.3389/fpsyg.2013.00811
dc.relationTyack, P. L. (1997). Vocal learning in cetaceans. Social Influences on Vocal Development, 26, 208–233. Retrieved from http://books.google.ch/books?id=U7h3s79HcrAC
dc.relationUllén, F., Mosing, M. A., Holm, L., Eriksson, H., & Madison, G. (2014). Psychometric properties and heritability of a new online test for musicality, the Swedish Musical Discrimination Test. Personality and Individual Differences, 63, 87–93. https://doi.org/10.1016/j.paid.2014.01.057
dc.relationUozumi, T., Tamagawa, A., Hashimoto, T., & Tsuji, S. (2004). Motor hand representation in cortical area 44. Neurology, 62(5), 757–761.
dc.relationUvnäs-Moberg, K. (1998). Oxytocin may mediate the benefits of positive social interaction and emotions. Psychoneuroendocrinology, 23(8), 819–835. https://doi.org/10.1016/S0306-4530(98)00056-0
dc.relationValdesolo, P., & DeSteno, D. (2011). Synchrony and the social tuning of compassion. Emotion, 11(2), 262–266. https://doi.org/10.1037/a0021302
dc.relationVan Puyvelde, M., Vanfleteren, P., Loots, G., Deschuyffeleer, S., Vinck, B., Jacquet, W., & Verhelst, W. (2010). Tonal synchrony in mother-infant interaction based on harmonic and pentatonic series. Infant Behavior and Development, 33(4), 387–400. https://doi.org/10.1016/j.infbeh.2010.04.003
dc.relationVernia C, A. M., Gustems C, J., & G, Calderón, C. (2016). Ritmo y procesamiento temporal. Aportaciones de Jaques-Dalcroze al lenguaje musical. Magister, 28(1), 35–41. https://doi.org/10.1016/j.magis.2016.06.003
dc.relationWallentin, M., Nielsen, A. H., Friis-Olivarius, M., Vuust, C., & Vuust, P. (2010). The Musical Ear Test, a new reliable test for measuring musical competence. Learning and Individual Differences, 20(3), 188–196. https://doi.org/10.1016/j.lindif.2010.02.004
dc.relationWallin, N. L., Merker, B. H., & Brown, S. (2000). The origins of music. MIT Press.
dc.relationWan, C. Y., & Schlaug, G. (2010). Music making as a tool for promoting brain plasticity across the life span. Neuroscientist, Vol. 16, pp. 566–577. https://doi.org/10.1177/1073858410377805
dc.relationWebb, D. M., & Zhang, J. (2005). FoxP2 in song-learning birds and vocal-learning mammals. Journal of Heredity, 96(3), 212–216. https://doi.org/10.1093/jhered/esi025
dc.relationWeinstein, D., Launay, J., Pearce, E., Dunbar, R. I. M., & Stewart, L. (2016). Singing and social bonding: Changes in connectivity and pain threshold as a function of group size. Evolution and Human Behavior, 37(2), 152–158. https://doi.org/10.1016/j.evolhumbehav.2015.10.002
dc.relationWelch, G. F., Himonides, E., Saunders, J., Papageorgi, I., & Sarazin, M. (2014). Singing and social inclusion. Frontiers in Psychology, 5, 803. https://doi.org/10.3389/fpsyg.2014.00803
dc.relationWhaling, C. (2000). What’s behind a song? The neural basis of song learning in birds. The Origins of Music, 65–76
dc.relationWhite, S. A. (2010). Genes and vocal learning. Brain and Language, 115(1), 21–28. https://doi.org/10.1016/j.bandl.2009.10.002
dc.relationWilliams, D. (2004). Homologues and Homology, Phenetics and Cladistics. Systematics Association Special Volume, 67, 191–224. https://doi.org/10.1201/9780203643037.ch9
dc.relationYoungerman, S. (1974). Maori Dancing since the Eighteenth Century. Ethnomusicology, 18(1), 75. https://doi.org/10.2307/850061
dc.relationZatorre, R J, & Belin, P. (2001). Spectral and temporal processing in human auditory cortex. Cerebral Cortex (New York, N.Y. : 1991), 11(10), 946–953.
dc.relationZatorre, Robert J. (1979). Recognition of dichotic melodies by musicians and nonmusicians. Neuropsychologia, 17(6), 607–617. https://doi.org/10.1016/0028- 3932(79)90035-6
dc.relationZhishuai, J., Hong, L., Daxing, W., Pin, Z., & Xuejing, L. (2017). Processing of emotional faces in congenital amusia: An emotional music priming event-related potential study. NeuroImage: Clinical, 14, 602–609. https://doi.org/10.1016/J.NICL.2017.02.024
dc.relationZimmerman, E., & Maron, J. L. (2016). FOXP2 gene deletion and infant feeding difficulties: a case report. Molecular Case Studies, 2(1), a000547. https://doi.org/10.1101/mcs.a000547
dc.relationJiang, C., Hamm, J. P., Lim, V. K., Kirk, I. J., & Yang, Y. (2010). Processing melodic contour and speech intonation in congenital amusics with Mandarin Chinese. Neuropsychologia, 48(9), 2630–2639. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2010.05.009
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsAcceso abierto
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.sourcereponame:Repositorio Institucional de la Universidad Pedagógica Nacional
dc.sourceinstname:Universidad Pedagógica Nacional
dc.subjectMúsica y sociedad
dc.subjectMusicalidad,
dc.subjectCohesión social
dc.subjectTrabajo en equipo
dc.subjectNiños - Música
dc.subjectEvolución
dc.subjectPedagogía y cognición
dc.titleMusicalidad y cohesión social: una aproximación experimental y bibliográfica desde el trabajo en equipo.
dc.typeinfo:eu-repo/semantics/bachelorThesis


Este ítem pertenece a la siguiente institución