masterThesis
Producción de etanol a partir de lodos papeleros usando extracto enzimático producido por hongos filamentosos (Verticillium sp.y Penicillium sp.)
Fecha
2016-08-12Registro en:
ANDI - Cámara de Pulpa Papel y Cartón. (2014). Reporte anual de consumo aparente papel de
desperdicio en Colombia. Bogotá.
Arantes, V., & Saddler, J. (2010). Access to cellulose limits the efficiency of enzymatic hydrolysis: the
role of amorphogenesis. Biotechnology for Biofuels, 3, 1–11.
Area, M., & Popa, V. (2014). Wood Fibres For Papermaking [e-book]. Shrewsbury: Smithers Pira.
Bahkali, A. H. (1995). Production of cellulase, xylanase and polygalacturonase by Verticillium tricorpus
on different substrates. Bioresource Technology, 51(2-3), 171–174.
Bahkali, A. H. (1996). Influence of various carbohydrates on xylanase production in Verticillium
tricorpus. Bioresource Technology, 57, 265–268
Bai, H., Wang, H., Sun, J., Irfan, M., Han, M., Huang, Y., … Yang, Q. (2013). Production, purification
and characterization of novel beta glucosidase from newly isolated Penicillium simplicissimum H11 in submerged fermentation. EXCLI Journal, 12, 528–540.
Béguin, P., & Aubert, J.-P. (1994). The biological degradation of cellulose. FEMS Microbiology Reviews,
13, 25–58.
Beltrán, P. A., & Leguizamón, J. L. (2012). Aislamiento y caracterización de microorganismos
celulolíticos provenientes de los desechos sólidos agroindustriales para su utilización en la producción de celulasas. Universidad de La Sabana.
Bender, D. A., Datta, S. P., & Smith, A. D. (2000). Oxford Dictionary of Biochemistry and Molecular
Biology (Revised ed). New York: Oxford University Press.
Berlin, A., Gilkes, N., Kilburn, D., Maximenko, V., Bura, R., Markov, A., … Saddler, J. N. (2006).
Evaluation of cellulase preparations for hydrolysis of hardwood substrates. Applied Biochemistry
and Biotechnology, 129-132, 528–545.
Bernardez, T. D., Lyford, K., Hogsett, D. A., & Lynd, L. R. (1993). Adsorption of Clostridium
thermocellum cellulases onto pretreated mixed hardwood avicel and lignin. Biotechnology and
Bioengineering, 42, 899–907.
Bezerra, R. M. F., & Dias, A. a. (2005). Enzymatic kinetic of cellulose hydrolysis. Applied Biochemistry
and Biotechnology, 126(1), 49–59.
Bhat, K. M., McCrae, S. I., & Wood, T. M. (1989). The endo-(1→4)-β- d-glucanase system of
Penicillium pinophilum cellulase: Isolation, purification, and characterization of five major
endoglucanase components. Carbohydrate Research1, 190(2), 279–297.
Bhat, S. Bhat, K. M. (1997). Cellulose degrading enzymes and their potential industrial applications.
Biotechnology Advances, 15(3/4), 583–620.
Bhatia, Y., Mishra, S., & Bisaria, V. S. (2002). Microbial β-Glucosidases: Cloning, Properties, and
Applications. Critical Reviews in Biotechnology, 22(4), 375–407
Bhiri, F., Chaabouni, S. E., Limam, F., Ghrir, R., & Marzouki, N. (2008). Purification and biochemical
charaBhiri, F., Chaabouni, S. E., Limam, F., Ghrir, R., & Marzouki, N. (2008). Purification and
biochemical characterization of extracellular betaglucosidases from the hypercellulolytic Pol6
mutant of Penicillium occitanis. Ap. Applied Biochemistry and Biotechnology, 149(2), 169–182
Biermann, C. J. (1996). Handbook of pulping and papermaking (2nd ed.). San Diego, CA.: Academic
Press.
Bisaria, V. S., & Ghose, T. K. (1981). Biodegradation of cellulosic materials: Substrates, microorganisms,
enzymes and products. Enzyme and Microbial Technology, 3, 90–104.
Brown, J. A., Collin, S. A., & Wood, T. M. (1987a). Development of a medium for high cellulase, xylanase and β-glucosidase production by a mutant strain (NTG III/6) of the cellulolytic fungus
Penicillium pinophilum. Enzyme and Microbial Technology, 9(6), 355–360
Brown, J. A., Collin, S. A., & Wood, T. M. (1987b). Enhanced enzyme production by the cellulolytic
fungus Penicillium pinophilum, mutant strain NTGIII/6. Enzyme Microb. Technol., 9, 176–180.
Burkheisser, E. V. (2010). Biological Barriers to Cellulosic Ethanol. (E. V. Burkheisser, Ed.)In
Renewable Energy: Research, Development and Policies Series (1st ed.). New York: Nova Science
Publishers, Inc
Cabezas, M. J., Salvador, D., & Sinisterra, J. V. (1991). Stabilization‐ activation of pancreatic enzymes
adsorbed on to a sepiolite clay. Of Chemical Technology and Biotechnology, 52(2), 265–274.
Castellanos, O. F., Sinitsyn, A. P., & Vlasenko Yu., E. (1995a). Comparative evaluation of hydrolytic
efficiency toward microcrystalline cellulose of Penicillium and Trichoderma cellulases. Bioresource
Technology, 52(2), 119–124.
Castellanos, O. F., Sinitsyn, A. P., & Vlasenko Yu., E. (1995b). Evaluation of hydrolysis conditions of
cellulosic materials by Penicillium cellulase. Bioresource Technology, 52(2), 109–117.
Castro, D., Peña, C., & Farrés, A. (2010). Producción y características de cutinasas: una alternativa
interesante para biocatálisis a nivel industrial. Revista Especializada En Ciencias QuímicoBiológicas, 13(1), 16–25.
Cavaco-Paulo, A., & Almeida, L. (1994). Cellulase Hydrolysis of Cotton Cellulose: The Effects of
Mechanical Action, Enzyme Concentration and Dyed Substrates. Biocatalysis and
Biotransformation, 10(1-4), 353–360.
Cavaco-Paulo, A., & Almeida, L. (1996). Effects of agitation and endoclucanase pretreat on hydrolysis of
cotton fabrics by a total cellulase. Textile Research Journal, 66(5), 287–294
Chaabouni, S. E., Hadj-Taieb, N., Mosrati, R., & Ellouz, R. (1994). Preliminary assessment of
Penicillium occitanis cellulase: A further useful system. Enzyme and Microbial Technology, 16(6),
538–542.
Chandra, M., Kalra, A., Sharma, P. K., & Sangwan, R. S. (2009). Cellulase production by six
Trichoderma spp. fermented on medicinal plant processings. Journal of Industrial Microbiology &
Biotechnology, 36(4), 605–609.
Chaudhari, S. A., & Singhal, R. S. (2015). Cutin from watermelon peels: A novel inducer for cutinase
production and its physicochemical characterization. International Journal of Biological
Macromolecules, 79, 398–404
Chen, H., Han, Q., Daniel, K., Venditti, R., & Jameel, H. (2014). Conversion of Industrial Paper Sludge
to Ethanol: Fractionation of Sludge and Its Impact. Applied Biochemistry and Biotechnology, 174,
2096–2113
Chen, H., Venditti, R., Gonzalez, R., Phillips, R., Jameel, H., & Park, S. (2014). Economic evaluation of
the conversion of industrial paper sludge to ethanol. Energy Economics, 44, 281–290
Chen, M., Qin, Y., Liu, Z., Liu, K., Wang, F., & Qu, Y. (2010). Isolation and characterization of a βglucosidase from Penicillium decumbens and improving hydrolysis of corncob residue by using it as
cellulase supplementation. Enzyme and Microbial Technology, 46(6), 444–449
Cherry, J., & Fidantsef, A. (2003). Directed evolution of industrial enzymes: an update. Current Opinion
in Biotechnology, 14(4), 438–443.
Chu, J., Li, W.-F., Cheng, W., Lu, M., Zhou, K.-H., Zhu, H.-Q., … Zhou, C.-Z. (2015). Comparative
analyses of secreted proteins from the phytopathogenic fungus Verticillium dahliae in response to
nitrogen starvation. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics.
Chulkin, A. M., Loginov, D. S., Vavilova, E. A., Abyanova1, A. R., Zorov, I. N., Kurzeev, S. A., …
Benevolenskii, S. V. (2009). Enzymological Properties of Endo_(1–4)_β_Glucanase Eg12p of
Penicillium canescens and Characteristics of Structural Gene egl2. Biokhimiya, 74(6), 805 – 813.
Ciolacu, D., Ciolacu, F., & Popa, V. I. (2008). Supramolecular structure - A key parameter for cellulose
biodegradation. Macromolecular Symposia, 272(1), 136–142.
Ciolacu, D., Ciolacu, F., & Popa, V. I. (2011). Celluose Allomorphs : Structure and characterization. Cellulose Chemistry and Technology, 45(1-2), 13–21.
Cooper, R. (1978). Cell wall-degrading enzymes of vascular wilt fungi. II. Properties and modes of action
of polysaccharidases of Verticillium albo-atrum and Fusarium oxysporum f. sp. lycopersici.
Physiologial Plant Pathology, 13, 101–134.
Cooper, R., & Wood, R. (1975). Regulation of synthesis of cell wall degrading enzymes by Verticillium
albo-atrum and Fusarium oxysporum f . sp . lycopersici. Physiological Plant Pathology, 5, 135–156.
Coughlan, M. (1992). Enzymic hydrolysis of cellulose: An overview. Bioresource Technology, 39(2),
107–115.
Coughlan, M. P. (1985). The properties of fungal and bacterial cellulases with comment on their
production and application. Biotechnology and Genetic Engineering Reviews, 3(1), 33–109
Cowling, E. (1975). Cellulose as a chemical and energy source. In Biotechnol. Bioeng. Symp. Conference
Proceedings (p. 163)
D. Humbird, R. Davis, L., Tao, C., Kinchin, D., Hsu, D., & Aden, A. (2011). Process Design and
Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol. Seattle
Dashtban, M., Maki, M., Leung, K. T., Mao, C., & Qin, W. (2010). Cellulase activities in biomass
conversion: measurement methods and comparison. Critical Reviews in Biotechnology, 30(May),
302–309.
Dies, G., Henrissat, B., Davies, G., & Henrissat, B. (1995). Structures and mechanisms of glycosyl
hydrolases. Structure Cell Press, 3(9), 853–859
Din, N., Gilkes, N., Tekant, B., Miller, R. J., Warren, R., & Kilburn, D. (1991). Non- hydrolytic
disruption of cellulose fibres by the binding domain of a bacterial cellulase. Nature Biotechnology,
9, 1096 – 1099.
Divne, C., Stahlberg, J., Reinikainen, T., Ruohonen, L., Pettersson, G., Knowles, J., … Jones, T. (1994).
The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from
Trichoderma reesei. Science, 265(5171), 524–528.
Domke, S. B., Aiello-Mazzarri, C., & Holtzapple, M. T. (2004). Mixed acid fermentation of paper fines
and industrial biosludge. Bioresource Technology, 91, 41–51
Doran, P. M. (1995). Bioprocess Engineering Principles. Bioprocess Engineering Principles. San Diego,
CA.: Academic Press.
Dowe, N., & Mcmillan, J. (2008). SSF Experimental Protocols — Lignocellulosic Biomass Hydrolysis and Fermentation Laboratory Analytical Procedure ( LAP ) SSF Experimental Protocols —
Lignocellulosic Biomass Hydrolysis and Fermentation Laboratory Analytical Procedures.
Renewable Energy. Golden, Colorado. Retrieved from www.nrel.gov
Duff, S. J. B., Moritz, J. W., & Andersen, K. L. (1994). Simultaneous Hydrolysis and Fermentation of
Pulp Mill Primary Clarifier Sludge. The Canadian Journal of Chemical Engineering, 72(6), 1013–
1020.
Duff, S. J. B., Moritz, J. W., & Casavant, T. (1995). Effect of surfactant and particle size reduction on
hydrolysis of deinking sludge and nonrecyclable newsprint. Biotechnology and Bioengineering,
45(3), 239–244
Duff, S. J. B., & Murrayh, W. D. (1996). Bioconversion of forest products industry Waste cellulosics to
fuel ethanol : A review. Science And Technology, 55
Espinoza, H. R., & Gómez, C. R. (2015). Abordaje metodológico para formulación participativa de planes
de asistencia técnica agropecuaria con enfoque territorial. Acta Agronómica, 64(451-62)
Esterbauera, H., Steinerb, W., Labudovaa, I., Hermanna, A., & Hayna, M. (1991). Production of
Trichoderma cellulase in laboratory and pilot scale. Bioresource Technology, 36(1), 51–65.
Eveleigh, D. E., Mandels, M., Andreotti, R., & Roche, C. (2009). Measurement of saccharifying cellulase.
Biotechnology for Biofuels, 2, 21.
Fan, Z., & Lynd, L. R. (2007a). Conversion of paper sludge to ethanol. I: Impact of feeding frequency and
mixing energy characterization. Bioprocess and Biosystems Engineering, 30, 27–34
Fan, Z., & Lynd, L. R. (2007b). Conversion of paper sludge to ethanol. II: Process design and economics
analysis. Bioprocess and Biosystems Engineering, 30, 35–45.
Fan, Z., South, C., Lyford, K., Munsie, J., Van Walsum, P., & Lynd, L. R. (2003). Conversion of paper
sludge to ethanol in a semicontinuous solids-fed reactor. Bioprocess and Biosystems Engineering,
26, 93–101.
Farid, M. A., El-Enshasy, H. A., & Noor El-Deen, A. M. (2002). Alcohol production from starch by
mixed cultures of Aspergillus awamori and immobilized Saccharomyces cerevisiae at different
agitation speeds. Journal of Basic Microbiology, 42(3), 162–171.
Gao, L., Gao, F., Zhang, D., Zhang, C., Wu, G., & Chen, S. (2013). Purification and characterization of a
new β-glucosidase from Penicillium piceum and its application in enzymatic degradation of
delignified corn stover. Bioresource Technology, 147, 658–661.
Gao, L., Wang, F., Gao, F., Wang, L., Zhao, J., & Qu, Y. (2011). Purification and characterization of a
novel cellobiohydrolase (PdCel6A) from Penicillium decumbens JU-A10 for bioethanol production.
Bioresource Technology, 102(17), 8339–8342
Gavrilescu, D. (2008). Energy From Biomass in Pulp and Paper Mills. Environmental Enginnering and
Management Journal, 7(5), 537–546.
Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59(2), 257–268.
Glazer, A., & Nikaido, H. (1998). MICROBIAL BIOTECHNOLOGY: Fundamentals of applied
microbiology (2nd ed.). New York: W.H. Freeman and Company
Gnanou, Y., & Fontanille, M. (2008). Organic and Physical Chemistry of Polymers. Hoboken, N.J.:
Wiley-Interscience
Golan, A. E. (2011). Cellulase : Types and Action, Mechanism, and Uses.
Gomes, D. S., Matamá, T., Cavaco-Paulo, A., Campos-Takaki, G. M., & Salgueiro, A. (2013). Production
of heterologous cutinases by E. coli and improved enzyme formulation for application on plastic
degradation. Electronic Journal of Biotechnology, 16(5), 3–3.
Goyal, A., Ghosh, B., & Eveleigh, D. (1991). Characteristics of fungal cellulases. Bioresource
Technology, 36(1), 37–50.
Gupta, D. P., & Heale, J. B. (1971). Induction of Cellulase (Cx) in Verticillium albo-atrum. Journal of
General Microbiology, 63, 163–173.
Gupta, R., & Lee, Y. (2009). Mechanism of cellulase reaction on pure cellulosic substrates.
Biotechnology and Bioprocess Engineering, 102, 1570–1581
Hamzei, E., & Pflug, W. (2007). Sorption and binding mechanism of polysaccharide cleaving soil
enzymes by clay minerals. Journal of Plant Nutrition and Soil Science, 144(5), 505–513.
Haskå, G. (1981). Activity of bacteriolytic enzymes adsorbed to clays. Microbial Ecology, 7(4), 331–341.
Henriksson, G., Gellerstedt, G., & Ek, M. (2009a). Pulp and Paper Chemistry and Technology. In Wood
Chemistry and Wood Technology. Berlin: De Gruyter.
Henriksson, G., Gellerstedt, G., & Ek, M. (2009b). Pulping Chemistry and Technology. In Pulp and
Paper Chemistry and Technology (p. 474). Berlin: De Gruyter
Henriksson, H., Ståhlberg, J., Isaksson, R., & Pettersson, G. (1996). The active sites of cellulases are
involved in chiral recognition: A comparison of cellobiohydrolase 1 and endoglucanase 1. FEBS
Letters, 390(3), 339–344.
Heredia, A., Jiménez, A., & Guillén, R. (1995). Composition of plant cell walls. Zeitschrift Für
Lebensmittel-Untersuchung Und Forschung, 200(1), 24–31.
Hildén, L., & Johansson, G. (2004). Recent developments on cellulases and carbohydrate-binding
modules with cellulose affinity. Biotechnology Letters, 26(22), 1683–1693.
Ingesson, H., Zacchi, G., Yang, B., Esteghlalian, A. R., & Saddler, J. N. (2001). The effect of shaking
regime on the rate and extent of enzymatic hydrolysis of cellulose. Journal of Biotechnology, 88,
177–182.
Jäger, G., Girfoglio, M., Dollo, F., Rinaldi, R., Bongard, H., Commandeur, U., … Büchs, J. (2011). How
recombinant swollenin from Kluyveromyces lactis affects cellulosic substrates and accelerates their
hydrolysis. Biotechnology for Biofuels, 4(1), 33.
Jeya, M., Joo, A. R., Lee, K. M., Tiwari, M. K., Lee, K. M., Kim, S. H., & Lee, J. K. (2010).
Characterization of beta-glucosidase from a strain of Penicillium purpurogenum KJS506. Applied
Microbiology and Biotechnology, 86(5), 1473–1484.
Joo, A.-R., Jeya, M., Lee, K.-M., Lee, K.-M., Moon, H.-J., Kim, Y.-S., & Lee, J.-K. (2010). Production
and characterization of β-1,4-glucosidase from a strain of Penicillium pinophilum. Process
Biochemistry, 45(6), 851–858.
Jørgensen, H., Eriksson, T., Börjesson, J., Tjerneld, F., & Olsson, L. (2003). Purification and
characterization of five cellulases and one xylanase from Penicillium brasilianum IBT 20888.
Enzyme and Microbial Technology, 32, 851–861.
Jørgensen, H., Kutter, J. P., & Olsson, L. (2003). Separation and quantification of cellulases and
hemicellulases by capillary electrophoresis. Analytical Biochemistry, 317, 85–93.
Jørgensen, H., Mørkeberg, A., Krogh, K. B. R., & Olsson, L. (2004). Growth and enzyme production by
three Penicillium species on monosaccharides. Journal of Biotechnology, 109, 309–313.
Jørgensen, H., Mørkeberg, A., Krogh, K. B. R., & Olsson, L. (2005). Production of cellulases and
hemicellulases by three Penicillium species: Effect of substrate and evaluation of cellulase adsorption by capillary electrophoresis. Enzyme and Microbial Technology, 36, 42–48.
Jørgensen, H., & Olsson, L. (2006). Production of cellulases by Penicillium brasilianum IBT 20888 -
Effect of substrate on hydrolytic performance. Enzyme and Microbial Technology, 38, 381–390.
Juturu, V., & Wu, J. C. (2012). Microbial xylanases: Engineering, production and industrial applications.
Biotechnology Advances, 30(6), 1219–1227.
Juturu, V., & Wu, J. C. (2014). Microbial cellulases: Engineering, production and applications.
Renewable and Sustainable Energy Reviews, 33, 188–203
Kang, K., Wang, S., Lai, G., Liu, G., & Xing, M. (2013). Characterization of a novel swollenin from
Penicillium oxalicum in facilitating enzymatic saccharification of cellulose. BMC Biotechnology,
13(1), 42
Kang, L., Wang, W., & Lee, Y. Y. (2010). Bioconversion of kraft paper mill sludges to ethanol by SSF
and SSCF. Applied Biochemistry and Biotechnology, 161(1-8), 53–66.
Kang, L., Wang, W., Pallapolu, V., & Lee, Y. (2011). Enhanced ethanol production from de-ashed paper
sludge by simultaneous saccharification and fermentation and simultaneous saccharification and cofermentation. BioResources, 6, 3791–3808.
Karmakar, M., & Ray, R. r. (2011). Current trends in research and application of microbial cellulases.
Journal of Microbiology, 6(1), 41–53.
Kaur, A., & Chadha, B. S. (2015). Penicillium janthinellum : a Source of Efficient and High Levels of βGlucosidase. Applied Biochemistry and Biotechnology, 175(2), 937–949.
Kemppainen, K., Ranta, L., Sipilä, E., Östman, A., Vehmaanperä, J., Puranen, T., … von Weymarn, N.
(2012). Ethanol and biogas production from waste fibre and fibre sludge – The FibreEtOH concept.
Biomass and Bioenergy, 46, 60–69.
Kim, I. J., Lee, H. J., Choi, I. G., & Kim, K. H. (2014). Synergistic proteins for the enhanced enzymatic
hydrolysis of cellulose by cellulase. Applied Microbiology and Biotechnology, 8469–8480.
Kim, Y. H., Cho, N. C., Choi, W. K., Kim, K. H., Chun, S. B., Lee, Y. K., & Chung, K. C. (1992).
Penicillium verruculosm Endo-β-1,4-Glucanase 의 정제 및 특성. Biochemistry and Molecular
Biology Reports, 25(2), 95–100.
Kirk, O., Torben V., B., & Fuglsang, C. (2002). Industrial enzyme applications. Current Opinion in
Biotechnology2, 13(4), 345–351
Ko, J.-A., Ryu, Y. B., Kwon, H.-J., Jeong, H. J., Park, S.-J., Kim, C. Y., … Kim, Y.-M. (2013).
Characterization of a novel steviol-producing β-glucosidase from Penicillium decumbens and
optimal production of the steviol. Applied Microbiology and Biotechnology, 97(18), 8151–8161
Kongruang, S., Han, M. J., Breton, C. I. G., & Penner, M. H. (2004). Quantitative Analysis of CelluloseReducing Ends. In M. Finkelstein & B. H. Davison (Eds.), Proceedings of the Twenty-Fifth
Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003, in Breckenridge, CO
(Vol. 113–116, pp. 213–231). Breckenridge, CO: Humana Press.
Krogh, K. B. R., Mørkeberg, A., Jørgensen, H., Frisvad, J. C., & Olsson, L. (2004). Screening Genus
Penicillium for Producers of Cellulolytic and Xylanolytic Enzymes. In M. Finkelstein, J. D.
McMillan, B. H. Davison, & B. Evans (Eds.), Proceedings of the Twenty-Fifth Symposium on
Biotechnology for Fuels and Chemicals Held May 4–7, 2003 (pp. 389–401). Breckenridge, CO:
Humana Press.
Kuhad, R. C., Gupta, R., & Singh, A. (2011). Microbial cellulases and their industrial applications.
Enzyme Research, 2011, 280696.
Ladisch, M. R., Lin, K. W., Voloch, M., & Tsao, G. T. (1983). Process considerations in the enzymatic
hydrolysis of biomass. Enzyme and Microbial Technology, 5, 82–102.
Lammirato, C., Miltner, A., Wick, L. Y., & Kästner, M. (2010). Hydrolysis of cellobiose by βglucosidase in the presence of soil minerals - Interactions at solid-liquid interfaces and effects on
enzyme activity levels. Soil Biology and Biochemistry, 42(12), 2203–2210.
Lark, N., Xia, Y., Qin, C. G., Gong, C. S., & Tsao, G. T. (1997). Production of ethanol from recycled
paper sludge using cellulase and yeast, Kluveromyces marxianus. Biomass and Bioenergy, 12(2),
135–143.
Lee, K.-M., Jeya, M., Joo, A.-R., Singh, R., Kim, I.-W., & Lee, J.-K. (2010). Purification and
characterization of a thermostable endo-β-1,4-glucanase from a novel strain of Penicillium
purpurogenum. Enzyme and Microbial Technology, 46(3), 206–211.
Liao, H., Fan, X., Mei, X., Wei, Z., Raza, W., Shen, Q., & Xu, Y. (2015). Production and characterization
of cellulolytic enzyme from Penicillium oxalicum GZ-2 and its application in lignocellulose
saccharification. Biomass and Bioenergy, 74, 122–134.
Lin, Y., Wang, D., & Wang, T. (2012). Ethanol production from pulp & paper sludge and monosodium
glutamate waste liquor by simultaneous saccharification and fermentation in batch condition.
Chemical Engineering Journal, 191, 31–37.
Lu, J., Reye, J., & Banerjee, S. (2010). Temperature dependence of cellulase hydrolysis of paper fiber.
Biomass and Bioenergy, 34(12), 1973–1977.
Luciano S., M. H., Rau, M., Pinto da Silva Bon, E., & Andreaus, J. (2012). A simple and fast method for
the determination of endo- and exo-cellulase activity in cellulase preparations using filter paper.
Enzyme and Microbial Technology, 51(5), 280–285.
Lynd, L. R., Lyford, K., South, C. R., Walsum, P. Van, & Levenson, K. (2001). Evaluation of paper
sludge for amenability to enzymatic hydrolysis and conversion to ethanol. Tappi Journal Peer
Reviewed Paper, 84(February), 50–55.
Ma, T., Kosa, M., & Sun, Q. (2014). Fermentation to bioethanol/biobutanol. In A. J. Ragauskas (Ed.),
Materials for biofuels (pp. 155–190). Singapore: EBSCO Publishing
Madrid, L. M., & Quintero, J. C. (2011). Ethanol production from paper sludge using Kluyveromyces
marxianus Producción de etanol de lodos papeleros usando Kluyveromyces marxianus, 185–191
Mahmood, T., & Elliott, A. (2006). A review of secondary sludge reduction technologies for the pulp and
paper industry. Water Research, 40, 2093–2112.
Maki, M., Leung, K., & Qin, W. (2009). The prospects of cellulase-producing bacteria for the
bioconversion of lignocellulosic biomass. Int J Biol Sci, 5, 500–516.
Mandelc, S., & Javornik, B. (2015). The secretome of vascular wilt pathogen Verticillium albo-atrum in
simulated xylem fluid. Proteomics, 15(4), 787–797.
Marjamaa, K., Toth, K., Bromann, P. A., Szakacs, G., & Kruus, K. (2013). Novel Penicillium cellulases
for total hydrolysis of lignocellulosics. Enzyme and Microbial Technology, 52(6-7), 358–369.
Marques, S., Alves, L., Roseiro, J. C., & Gírio, F. M. (2008). Conversion of recycled paper sludge to
ethanol by SHF and SSF using Pichia stipitis. Biomass and Bioenergy, 32(5), 400–406.
Martins, L. F., Kolling, D., Camassola, M., Dillon, a. J. P., & Ramos, L. P. (2008). Comparison of
Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against
various cellulosic substrates. Bioresource Technology, 99, 1417–1424
McQueen, S., Durachko, D., & Cosgrove, D. (1992). Two endogenous proteins that induce cell wall
extension in plants. The Plant Cell Online, 4(11), 1425–1433.
Mendez, L. M. (2015). Obtención de hidrofobinas a partir de hongos filamentosos aislados de residuos
agroindustriales de plátano (Musa AAB Simmonds). Proyecto de investigación. Universidad de La
Sabana
Merino, S. T., & Cherry, J. (2007). Progress and challenges in enzyme development for biomass
utilization. Advances in Biochemical Engineering/Biotechnology, 108(June), 95–120.
Meyer, M. P., & Canevascini, G. (1981). Separation and some properties of two intracellular bglucosidase of Sporotrichum thermophile. Applied and Environmental Mircobiology, 41, 924–931.
Mohagheghi, A., Tucker, M., Grohmann, K., & Wyman, C. (1992). High solids simultaneous
saccharification and fermentation of pretreated wheat straw to ethanol. Applied Biochemistry and
Biotechnology, 33(2), 67–81.
Monte, M. C., Fuente, E., Blanco, A., & Negro, C. (2009). Waste management from pulp and paper
production in the European Union. Waste Management (New York, N.Y.), 29(1), 293–308.
Mora, S., & Banerjee, S. (2013). Economics of the hydrolysis of cellulosic sludge to glucose. Bioprocess
and Biosystems Engineering, 36(8), 1039–42.
Moreno, M. L. O., & Vélez, D. U. (2010). Determinación De La Actividad Lignocelulolítica En Sustrato
Natural De Aislamientos Fúngicos Obtenidos De Sabana De Pastoreo Y De Bosque Secundario De
Sabana Inundable Tropical. Ciencia Del Suelo, 28(2), 169–180.
Morozova, V. V., Gusakov, A. V., Andrianov, R. M., Pravilnikov, A. G., Osipov, D. O., & Sinitsyn, A. P.
(2010). Cellulases of Penicillium verruculosum. Biotechnology Journal, 5(8), 871–880
Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y., Holtzapple, M., & Ladisch, M. D. (2005).
Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource
Technology, 96(6), 673–686.
Nevalainen, H., & Penttilä, M. (1995). Molecular Biology of Cellulolytic Fungi. In P. A. Lemke & K.
Esser (Eds.), Genetics and Biotechnology (pp. 303–319). Springer-Verlag Berlin Heidelberg GmbH
Nieves, R. a, Ehrman, C. I., Adney, W. S., Elander, R. T., & Himmel, M. E. (1998). Technical
Communication: survey and analysis of commercial cellulase preparation suitable for biomass conversion to ethanol. World Journal of Microbiology and Biotechnology, 14, 301–304.
Nobel, P. S. (2005). Physicochemical and Environmental Plant Physiology. (D. Dreibelbis & K. Sonnack,
Eds.) (3rd ed.). Amsterdam: Elsevier. Academic Press.
Novo, M., Pomar, F., Gayoso, C., & Merino, F. (2006). Cellulase Activity in Isolates of Verticillium
dahliae Differing in Aggressiveness. Plant Disease, 90(2), 155–160.
Novozymes. (2010). Cellic CTec2 and HTec2 - Enzymes for hydrolysis of lignocellulosic materials.
Denmark.
Pallardy, S. G., & Kozlowski, T. T. (2008). Physiology of Woody Plants (3ra. ed.). Amsterdam: Elsevier.
Pan, X., Xie, D., Gilkes, N., Gregg, D., & Saddler, J. (2005). Strategies to enhance the enzymatic
hydrolysis of pretreated softwood with high residual lignin content. Applied Microbiology and
Biotechnology, 1, 1069–1079
Peng, L., & Chen, Y. (2011). Conversion of paper sludge to ethanol by separate hydrolysis and
fermentation (SHF) using Saccharomyces cerevisiae. Biomass and Bioenergy, 35(4), 1600–1606.
Philippidis, G. P., Smith, T. K., & Wyman, C. E. (1993). Study of the enzymatic hydrolysis of cellulose
for production of fuel ethanol by the simultaneous saccharification and fermentation process.
Biotechnology and Bioengineering, 41(9), 846–853.
Philippidis, G. P., Spindler, D. D., & Wyman, C. W. (1992). Mathematical modeling of cellulose
conversion to ethanol by the simultaneous saccharification and fermentation process. Applied
Biochemistry and Biotechnology, 34/35, 543–556.
Phitsuwan, P., Laohakunjit, N., Kerdchoechuen, O., Kyu, K., & Ratanakhanokchai, K. (2013). Present
and potential applications of cellulases in agriculture, biotechnology, and bioenergy. Folia
Microbiologica, 58(2), 163–176
Picart, P., Diaz, P., & Pastor, F. I. J. (2007). Cellulases from two Penicillium sp. strains isolated from
subtropical forest soil: Production and characterization. Letters in Applied Microbiology, 45(1),
108–113.
Pol, D., Laxman, R. S., & Rao, M. (2012). Purification and biochemical characterization of
endoglucanase from Penicillium pinophilum MS 20. Indian Journal of Biochemistry & Biophysics,
49, 189–194.
Prasetyo, J., Naruse, K., Kato, T., Boonchird, C., Harashima, S., & Park, E. Y. (2011). Bioconversion of
paper sludge to biofuel by simultaneous saccharification and fermentation using a cellulase of paper sludge origin and thermotolerant Saccharomyces cerevisiae TJ14. Biotechnology for Biofuels, 4(1),
35
Pulido, C. (2013). Caracterización bioquímica del extracto de enzimas celulolíticas obtenidas a partir de
microorganismos celulolíticos provenientes los desechos sólidos agroindustriales (cáscaras de
banano y residuos de madera) para la producción de bioetanol. Universidad de La Sabana.
Ragauskas, A. J. (2014). Materials for biofuels. In Materials and Energy (p. 340). Singapore: World
Scientific Publishing Co. Pte. Ltd.
Ramani, G., Meera, B., Vanitha, C., Rao, M., & Gunasekaran, P. (2012). Production, Purification, and
Characterization of a β-Glucosidase of Penicillium funiculosum NCL1. Applied Biochemistry and
Biotechnology, 167(5), 959–972.
Ramos, L., Breuil, C., & Saddler, J. (1993). The use of enzyme recycling and the influence of sugar
accumulation on cellulose hydrolysis by Trichoderma cellulases. Enzyme and Microbial
Technology, 15, 19–25.
Roche, C. M., Dibble, C. J., Knutsen, J. S., Stickel, J. J., & Liberatore, M. W. (2009). Particle
concentration and yield stress of biomass slurries during enzymatic hydrolysis at high-solids
loadings. Biotechnology and Bioengineering, 104(2), 290–300
Runge, T., & Zhang, C. (2013). Hemicellulose extraction and its effect on pulping and bleaching. Tappi
Journal, 12(10), 45–52
Sakata, M., Ooshima, H., & Harano, Y. (1985). Effects of agitation on enzymatic saccharification of
cellulose. Biotechnology Letters, 7(9), 689–694.
Saksirirat, W., & Hoppe, H. H. (1991). Secretion of Extracellular Enzymes By Verticillium-Psalliotae
Treschow and Verticillium-Lecanii (Zimm) Viegas During Growth on Uredospores of the Soybean
Rust Fungus (Phakopsora-Pachyrhizi Syd) in Liquid Cultures. Journal of PhytopathologyPhytopathologische Zeitschrift, 131(2), 161–173
Saloheimo, M., Paloheimo, M., Hakola, S., Pere, J., Swanson, B., Nyyssonen, E., … Penttila, M. (2002).
Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, ex- hibits
disruption activity on cellulosic materials. European Journal of Biochemistry, 269(17), 4202–4211.
Samaniuk, J. R., Tim Scott, C., Root, T. W., & Klingenberg, D. J. (2011). The effect of high intensity
mixing on the enzymatic hydrolysis of concentrated cellulose fiber suspensions. Bioresource
Technology, 102(6), 4489–4494
Santos, J. R. A., Lucena, M. S., Gusmão, N. B., & Gouveia, E. R. (2012). Optimization of ethanol production by Saccharomyces cerevisiae UFPEDA 1238 in simultaneous saccharification and
fermentation of delignified sugarcane bagasse. Industrial Crops and Products, 36, 584–588.
Schwarz, W. H. (2012). The cellulases and their application in degrading agro- industrial waste. Revista
Colombiana de Biotecnología, 4(1), 6–13.
Selby, K., & Maitland, G. C. (1965). Protein expression and purification. Biochemical Journal, 94, 578.
Shi, Y., Xu, X., & Zhu, Y. (2009). Optimization of Verticillium lecanii spore production in solid-state
fermentation on sugarcane bagasse. Applied Microbiology and Biotechnology, 82(5), 921–7.
Shuangqi, T., Zhenyu, W., Ziluan, F., Lili, Z., & Jichang, W. (2011). Determination methods of cellulase
activity. African Journal of Biotechnology, 10(37), 7122–7125.
Silva, P., Magalhães, W., Helm, C., Lima, E., Mendes, D., & Lima, T. (2011). Evaluation of the
enzymatic digestibility of paper industry byproducts. BMC Proceedings (Vol. 5). BioMed Central
Ltd.
Sims, R. E. H., Mabeeb, W., Saddler, J. N., & Taylor, M. (2010). An overview of second generation
biofuel technologies. Bioresource Technology, 101(6), 1570–1580.
Singhania, R. R., Sukumaran, R. K., & Pandey, A. (2007). Improved Cellulase Production by
Trichoderma reesei RUT C30 under SSF Through Process Optimization. Applied Biochemistry and
Biotechnology, 142(1), 60–70.
Skomarovskiĭ, a a, Markov, a V, Gusakov, a V, Kondrat’eva, E. G., Okunev, O. N., Bekkerevich, a O.,
… Sinitsyn, a P. (2006). New cellulases efficiently hydrolyzing lignocellulose pulp. Prikladnaia
Biokhimiia I Mikrobiologiia, 42(6), 674–680.
Skomarovsky, a. a., Gusakov, a. V., Okunev, O. N., Solov’eva, I. V., Bubnova, T. V., Kondrat’eva, E.
G., & Sinitsyn, a. P. (2005). Studies of hydrolytic activity of enzyme preparations of Penicillium
and Trychoderma fungi. Applied Biochemistry and Microbiology, 41(2), 182–184.
Soucy, J., Koubaa, A., Migneault, S., & Riedl, B. (2014). The potential of paper mill sludge for wood–
plastic composites. Industrial Crops and Products, 54, 248–256.
Souza, A. L. de, Pimentel, P. S. S. R., Andrade, E. V. de, Astolfi-Filho, S., & Nunes-Silva, C. G. (2013).
Purification of endoglucanase produced by Penicillium citrinum isolated from Amazon.
Florianópolis, Brazil.
Stålbrand, H., Mansfield, S. D., Saddler, J. N., Kilburn, D. G., Warren, R. a, & Gilkes, N. R. (1998).
Analysis of molecular size distributions of cellulose molecules during hydrolysis of cellulose by recombinant Cellulomonas fimi beta-1,4-glucanases. Applied and Environmental Microbiology,
64(7), 2374–2379.
Sun, Q. (2014). Enzymatic deconstruction of lignocellulose to fermentable sugars. In A. J. Ragauskas
(Ed.), Materials for biofuels (pp. 127–154). Singapore: World Scientific Publishing Company.
Sun, X., Liu, Z., Zheng, K., Song, X., & Qu, Y. (2008). The composition of basal and induced cellulase
systems in Penicillium decumbens under induction or repression conditions. Enzyme and Microbial
Technology, 42, 560–567.
Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review.
Bioresource Technology, 83, 1–11.
Taiz, L., Zeiger, E., Blat Egea, B., García Agustín, P., & González Nebauer, SergioFlors Herrero, V.
(2006). Fisiología vegetal. Vol. 2. Castellón de la Plana: Universitat Jaume I.
Teeri, T. T. (1997). Crystalline cellulose degradation: New insight into the function of cellobiohydrolases.
Trends in Biotechnology, 15(5), 160–167.
Teeri, T. T., Reinikainen, T., Ruohonena, L., Jonesb, T. A., & Knowlesa, J. (1992). Domain function in
Trichoderma reesei cellobiohydrolases. Journal of Biotechnology, 24(2), 169–176
Tishkov, V. I., Gusakov, A. V., Cherkashina, A. S., & Sinitsyn, A. P. (2013). Engineering the pHoptimum of activity of the GH12 family endoglucanase by site-directed mutagenesis. Biochimie, 95,
1704–1710.
Varga, E., Szengyel, Z., & Réczey, K. (2002). Chemical pretreatments of corn stover for enhancing
enzymatic digestibility. Applied Biochemistry and Biotechnology, 98-100(1), 73–87.
Vázquez, C., Sellek, R., & Fernández, N. (1992). Enzimas que degradan paredes vegetales en Fusarium
oxysporum. Boletín de Sanidad Vegetal Plagas, 18, 693–698
Velson, J. (2014). Biofuels. Retrieved November 15, 2015, from www.quora.com
Villadsen, J., Nielsen, J., & Lidén, G. (2011). Bioreaction Engineering Principles (Third Edit). New
York.
Volkov, P. V., Rozhkova, A. M., Gusakov, A. V., & Sinitsyn, A. P. (2014). Homologous cloning,
purification and characterization of highly active cellobiohydrolase I (Cel7A) from Penicillium
canescens. Protein Expression and Purification, 103, 1–7
Wajima, T., Haga, M., Kuzawa, K., Ishimoto, H., Tamada, O., Ito, K., … Rakovan, J. F. (2006). Zeolite
synthesis from paper sludge ash at low temperature (90 degrees C) with addition of diatomite.
Journal of Hazardous Materials, 132(2-3), 244–52.
Walpole, R. (1999). Probabilidad y Estadística para ingenieros (6th ed.). Mexico: Prentice-Hall
Hispanoamericana S.A
Wang, W., Kang, L., & Lee, Y. Y. (2010). Production of cellulase from kraft paper mill sludge by
Trichoderma reesei rut C-30. Applied Biochemistry and Biotechnology, 161(1-8), 382–94.
Wang, W., Liu, J., Chen, G., Zhang, Y., & P., G. (2003). Function of a low molecular weight peptide
from Trichoderma pseudokoningii S38 during cellulose biodegradation. Current Microbiology,
46(5), 0371–0379
Weitz, D. A., & Feldman, S. . (2012). Energías renovables para el desarrollo sostenible: Producción de
Bioetanol a partir de biomasa lignocelulósica en ambiente rural. Revista Virtual Pro, 122(3), 19.
Wilson, D. B. (2009). Cellulases and biofuels. Current Opinion in Biotechnology, 20(3), 295–299.
Wingren, A., Galbe, M., & Zacchi, G. (2003). Techno-economic evaluation of producing ethanol from
softwood: comparison of SSF and SHF and identification of Bottlenecks. Biotechnology Progress,
19, 1109–1117.
Wood, T. ., McCrae, S. I., & Macfarlane, C. C. (1980). The isolation, purification and properties of the
cellobiohydrolase component of Penicillium funiculosum cellulase. Biochemical Journal, 189, 51–
65.
Wood, T. M. (1975). Properties and mode of action of cellulases. Biotechnol Bioeng Symp, 5, 111–133.
Wu, Z., & Lee, Y. Y. (1997). Inhibition of the enzymatic hydrolysis of cellulose by ethanol.
Biotechnology Letters, 19(10), 977–979
Yamashita, Y., Kurosumi, A., Sasaki, C., & Nakamura, Y. (2008). Ethanol production from paper sludge
by immobilized Zymomonas mobilis. Biochemical Engineering Journal, 42(3), 314–319.
Yang, T., Liu, J., Lin, Q., & Jiang, X. (2009). Penicillium expansum YT01: A Lignocellulose-Degrading
Fungal Strain Isolated from China Gaoligong Mountain Humus Soil. Journal of Biobased Materials
and Bioenergy, 3(4), 348–353
Young, D., & Pegg, G. (1982). The action of tomato and Verticillium albo-atrum glycosidases on the hyphal wall of V. albo-atrum. Physiologial Plant Pathology, 21(3), 411–423.
Yu, Z., Jameel, H., Chang, H.-M., & Park, S. (2011). The effect of delignification of forest biomass on
enzymatic hydrolysis. Bioresource Technology, 102(19), 9083–9.
Zampieri, D., Guerra, L., Camassola, M., & Dillon, A. J. P. (2013). Secretion of endoglucanases and βglucosidases by Penicillium echinulatum 9A02S1 in presence of different carbon sources. Industrial
Crops and Products, 50, 882–886.
Zhang, Y., Himmel, M., & Mielenz, J. (2006). Outlook for cellulase improvement: screening and
selection strategies. Biotechnology Advances, 24(5), 452–481.
Zhang, Y., Hong, J., & Ye, X. (2009). Cellulase Assays. In J. Mielenz (Ed.), Methods in molecular
biology (Vol. 581, pp. 213–231). Clifton, N.J.: Humana Press
Zhang, Y., & Lynd, L. R. (2004). Toward an aggregated understanding of enzymatic hydrolysis of
cellulose: Noncomplexed cellulase systems. Biotechnology and Bioengineering, 88(7), 797–824.
Zhang, Y., & Lynd, L. R. (2005). Determination of the Number-Average Degree of Polymerization of
Cellodextrins and Cellulose with Application to Enzymatic Hydrolysis. Biomacromolecules, 6(3),
1510–1515.
Zhou, Q., Lv, X., Zhang, X., Meng, X., Chen, G., & Liu, W. (2011). Evaluation of swollenin from
Trichoderma pseudokoningii as a potential synergistic factor in the enzymatic hydrolysis of
cellulose with low cellulase loadings. World Journal of Microbiology and Biotechnology, 27(8),
1905–1910.
Zor, T., & Selinger, Z. (1996). Linearization of the Bradford protein assay increases its sensitivity:
theoretical and experimental studies. Analytical Biochemistry, 236(236), 302–308.
262503
TE08457
Autor
Prieto Correa, Rosa Erlide
Institución
Resumen
El lodo papelero ha sido considerado una biomasa atractiva para la producción de biocombustibles de segunda generación. Por otra parte, las enzimas son un factor crítico en la bioconversión de los residuos lignocelulósicos ya que debido a sus costos, son un cuello de botella económico en la producción de bioetanol (Machado et al., 2010). Se produjo un extracto enzimático a partir de los hongos filamentosos Verticillium sp. y Penicillium sp., compuesto por proteinas con pesos moleculares entre 11,62 y 107,6 kDa. El extracto fue usado para producir azúcares fermentables por hidrólisis enzimática y sus resultados fueron comparados con los azúcares producidos empleando la enzima comercial Cellic®, suministrada por Novozymes. Se evaluaron factores como tiempo de hidrólisis, temperatura, concentración de extracto enzimático o enzima comercial y carga de lodo. La hidrólisis con extracto enzimático produjo el 26% y 17% de los azúcares reductores producidos con Cellic® a 37°C y 45°C respectivamente, bajo las mismas condiciones (18,17% carga de lodo, 6% extracto o enzima, 150 rpm y 12 horas. Se observó un efecto buffer por las cenizas presentes en el lodo papelero.