masterThesis
Modelado para la ubicación de los laboratorios satélites en Campo Rubiales - Meta Colombia por parte de Pacifil Rubiales Energy
Fecha
2015-03-06Registro en:
Ares, F. (2003) Business plan de una empresa de transporte de mercancías, pp 48-63.
Aponte Penagos & Rosas Castro, (2009) Propuesta de solución al problema de localización
de centros de distribución basándose en la Meta Heurística GRASP.
Aronofsky JS, Williams AC. The use of linear programming and mathematical models in
underground oil production. Manage Sci 1962;8(4):394e407.
Canel,C., Khumawala, B.M., (1997), Multi-period international facilities location: An
algorithm and application, International Journal of Production Economics 35.
Canel, C., Khumawala, B.M.,Law, J., Loh, A., (2005), An algorithm for the capacitated, multicommodity
multi-period facility location problem
Contrerasa, I., Fernándezb, E., Reineltc, G., (2001), Minimizing the maximum travel time in
a combined model of facility location and network design.
Chen, L., Olhager, J., Tang, O., Manufacturing Facility Location and sustainability: A
literature review and research agenda, Elsevier, 2014
Current, J., Daskin, M., & Schilling, D. (2001). Discrete Network Location Models. In: Facility
LocationTheory: Applications and Methods, pp. 85-112. Berlin: Z. Drezner and H. Hamacher
Eds.
Current, J., Min, H. & Schillin, D. (1990), Multiobjective analysis of facility location decisions,
European Journal of Operational Research 49, 295-307, North Holland
Current, J., Min, H.& Schillin, D., (2002). Facility Location: Applications and Theory Discrete
network location models. In: Drezner, Z., Hamacher, H. (Eds.). Springer-Verlag, Berlin,
p.81–118.
Daskin, M., Snyder, L., & Berger, R. (2003). Facility Location in Supply Chain Design.
Working paper, No. 03-010. Northwestern University.
Duarte A., Sarache W., Costa Y., A facility-location model for biofuel plants: Applications in
the Colombian context, 2014
Durukan, A., Lim, J., (1990), A decomposition approach for facility location and relocation
problem with uncertain number of future facilities.
Zanjirani Farahani R., Asgari N., Heidari N., Hosseininia M. Goh M., Covering problems in
facility location: A review, 2012
Boloori, A., Zanjirani Farahani R., Facility location dynamics: An overview of classification s
and applications, Elsevier, 2012.
Guajardo M., Kylinger M, Rönnqvist M., Speciality oils supply chain optimization: From a
decoupled to an integrated planning approach, 2013
Hakimi, S. (1964). Optimum location of switching centers and the absolute centers and
medians of a graph. Operations Research, 12, 450-459.
Haugland, D., Jornsten, K., Shayan, E., Modelling Petroleum fields with movable platforms,
Appl. Math. Modeling,1991, Vol. 15, January
Heungjo An W., Wilhelm E., Searcy S., Biofuel and petroleum-based fuel supply chain
research: A literature review, 2011
Melo, M.T., Nickel, S., Saldanha-da-Gama, F., Facility location and supply chain
management – A review, European Journal of Operational Research 196 (2009) 401-412.
Pacific Rubiales Energy, Reporte de Sostenibilidad, 2013
Papageorgiou LG. Supply chain optimisation for the process industries: advances and
opportunities. Comput Chem Eng 2009;33(12):1931–8.
Rentizelas A., Tatsiopoulos I., Locating a bioenergy facility using a hybrid optimization
method, 2010
Revelle, C.S., Eiselt, H.A., Location analysis: A synthesis and survey, European Journal of
Operational Research, Vol. 165, pag. 1-19, 2005
Romero, C., Rehman, T., Multiple Criteria analysis for agricultural decisions, Vol. 11, Pages
1-186, 2003
Sahebia H., Nickela S, Ashayeric J. Strategic and tactical mathematical programming
models within the crude oil supply chain context—A review , 2014
Shapiro JF. Challenges of strategic supply chain planning and modeling. ComputChem Eng
2004;28(6):855–61.
Shen, Z.-J.M. & Daskin, M.S., 2005. Trade-off between Customer service and cost in
integrated supply chain design. Manufacturing & Service Operations Management, pp.7, 3;
ABI/INFORM Global pg. 188.
Subhash, D., Multi-criteria multi-facility location in Niwai block,Rajasthan, NIILM Centre for
Management Studies, Greater Noida, UP, India 2012.
260224
TE07173
Autor
Vega Mejía, Carlos Alberto
Institución
Resumen
Pacific Rubiales Energy es la primera empresa petrolera independiente en Colombia operadora del mayor Campo Petrolero en extensión y producción. Dentro de la organización interna de la empresa, uno de los departamentos de apoyo es el de Tratamiento Químico y Laboratorio, que está encargado del manejo y operación de los laboratorios satélites, los cuales están localizados por la extensión del Campo cumpliendo funciones de análisis de cabeza de pozo o como comúnmente se le conoce en la industria %BS&W (%Bottom Sediment and Water). En este sentido, la ubicación del laboratorio satélite debe ser óptima para maximizar su capacidad instalada de análisis y obtener el mayor número de resultados posible por pozo. Basándose en lo anterior, la empresa está interesada en modelos que permitan ubicar los laboratorios satélites en la mejor locación posible sin necesidad de incrementar el número de ellos, lo que implica un costo adicional a la operación, sin mencionar las restricciones que deben ser consideradas teniendo en cuenta las condiciones de campo.