masterThesis
Solución de problemas estocásticos de localización-ruteo
Fecha
2013-06-16Registro en:
Albareda M., Fernández E., Laporte G., 2007. Heuristic and lower bound for a
stochastic location-routing problem. European Journal of Operational
Research 179. 3 (Jun 16, 2007): 940.
Amir A., Nader A., 2010. Incorporating location, routing and inventory decisions in
supply chain network design. Transportation Research Part E: Logistics and
Transportation Review Volume 46, Issue 5, September 2010, Pages 582–597.
Averbakh I., Berman O. and Simchi-Levi D., 1994. Probabilistic a priori routinglocation
problems. Naval Research Logistics Vol. 41, 1994, pp. 973-989.
Averbakh, I., Berman, 0.. 1995. Probabilistic sales-delivery man and sales-delivery
facility location problems on a tree. Transportation Science 29 (2). I84- 197.
Baran B., Hermosilla, A. 2004. Comparación de un sistema de colonias de
hormigas y una estrategia evolutiva para el problema del ruteo de vehículos
con ventanas de tiempo en un contexto multiobjetivo.[en línea]. Asunción:
Uruguay. Centro Nacional de Computación, Universidad Nacional de
Asunción.
Bastian C., Kan R. 1992. The stochastic vehicle routing problem revisited.
European Journal of Operational Research 56, 3:407-412.
Bender V, Strohmeier E (1979) Largerstandorto imierung und
Fuhrparkeinsatzplanung in der konsumguter-industrie. Zen Sconrift Fur Oper
Res 23:89–104
Bertsimas D., 1989. Traveling salesman facility location problems. Transportation
Science August 1989 vol. 23 no. 3 184-191.
Berman, 0., Jaillet, P., Simchi-Levi, D., 1995. Location-routing problems with
uncertainty. In: Drezner, Z. (Ed.), Facility Location: A Survey of Applications
and Methods. Springer-Verlag, New York, NY, pp. 427-453.
Berman O., Simchi-Levi D., 1988a. Finding the optimal a priori tour and location of
a traveling salesman with nonhomogeneous customers. Transportation
Science May 1988 vol. 22 no. 2 148-154.
Berman O. and Simchi-Levi D., 1988b. Minisum location of a travelling salesman
on simple networks. European Journal of Operational Research Volume 36,
Issue 2, August 1988, Pages 241–250.
Berman O. and Simchi-Levi D., 1989. The traveling salesman location problem on
stochastic networks. Transportation Science February 1989 vol. 23 no. 1 54-
57.
Billionnet A, Elloumi S, Grouz-Djerbi L (2005) Designing radio-mobile access
networks based on synchronous digital hierarchy rings. Comput Oper Res
32:379–394
Bo Z., Zujun M., Sai J., 2008. Location-routing-inventory problem with stochastic
demand in logistics distribution systems. Wireless Communications,
Networking and Mobile Computing, 2008. WiCOM '08. 4th International
Conference on 12-14 Oct. 2008.
Bruns A, Klose A, St¨ahly P (2000) Restructuring of Swiss parcel delivery services.
OR Spektrum 22:285–302
Burness, R.C., White, J.A., 1976. The traveling salesman location problem.
Transportation Science IO (4). 348-360
Chan Y., Carter W., Burnes M., 2001. A multiple-depot, multiple-vehicle, locationrouting
problem with stochastically processed demands. Computers &
Operations Research 28 (2001) 803826.
Chepuri, K., Homem-de-Mello, T. 2005. Solving the vehicle routing problem with
stochastic demands using the cross-entropy method. Annals of Operations
Research, 134(1), 153–181
CSCMP, Council of Supply Chain of Management Professionals, 2012.
Cui G., Li Y., 2007a. Combined location routing and inventory problem with fuzzy
demand in logistics system. Control and decision. 2007, vol 22; numb 9, pages
1000-1004.
Cui g., li y., 2007b. Study on the combined location routing and inventory problem
in logistics system based on bi-level programming. Systems engineeringtheory
& practice 2007-06.
Daskin, M.S., 1987. Location, dispatching, and routing models for emergency
services with stochastic travel times. In: Ghosh, A., Rushton, G. (Eds.), Spatial
Analysis and Location-Allocation Models. Von Nostrand Reinhold Company,
New York. NY, pp. 224-265
Doerner K., Hartl R., Siegfried B., Lucka M. 2006. Parallel cooperative savings
based ant colony optimization—multiple search and decomposition
approaches. Parallel Process. Lett. Volume 16, Issue 03, pp. 351-369,
September 2006.
Dorigo, M., Blum, C. 2005. Ant colony optimization theory: A survey. Theoretical
Computer Science, 344(2-3), 243–278.
Dorigo M., Gambardella L. 1997. Ant colonies for the travelling salesman problem.
BioSystem, Vol. 43, No. 1, pp. 73-81.
Fazel M., Hemmati A., Davari S., 2011. The multi-depot capacitated locationrouting
problem with fuzzy travel times. Expert Systems with Applications 38
(2011) 10075–10084.
Fazel M., Hemmatia A., Davaria S., Turksen B., 2012. Capacitated location-routing
problem with time windows under uncertainty. Knowledge-Based Systems
Available online 9 October 2012 In Press, Corrected Proof — Note to users.
Fuellerer G., Doerner K., Hartl R., Iori M. Ant colony optimization for the twodimensional loading vehicle routing problem. Computers & Operations
Research. Volume 36, Issue 3, March 2009, Pages 655–673
Ghan, Y., Merrill, D., 1997. The probabilistic multiple-travelling-salesmen facilitylocation problem: Space-Filling Curves and Asymptotic Euclidean Analyses.
Military Operations Research, Volume 3, Number 2, 1997 , pp. 37-53(17).
Gunnarsson H, Rönnqvist M, Carlsson D (2006) A combined terminal location and
ship routing problem. J Oper Res Soc 57:928–938
Harrison, H., 1979. A planning system for facilities and resources in distribution
networks. Interfaces 9 (2). 6-22.
Hassan-Pour H., Mosadegh-Khah M., Tavakkoli-Moghaddam R., 2009. Solving a
multi-objective multi-depot stochastic location-routing problem by a hybrid
simulated annealing algorithm. Proceedings of the Institution of Mechanical
Engineers, Part B: Journal of Engineering Manufacture August 1, 2009 vol.
223 no. 8 1045-1054
Hassanzadeh A., Mohseninezhad L., Tirdad A., Dadgostari F., and Zolfagharinia
H., (2009). R.Z. Farahani and M. Hekmatfar (eds.), Facility location: concepts,
models, algorithms and case studies, contributions to management science,
Germany, Physica-Verlag, 2009, 549 pp., ISBN 978-3-7908-2150-5
(hardprint), 978-3-7908-2151-2 (electronic) Wolf, Gert W. International Journal
of Geographical Information Science, 2011, Vol.25(2), pp.331-333
Herazo Padilla N., Montoya-Torres J., Muñoz Villamizar A., Nieto Isaza S.,
Ramirez Polo L. Coupling ant colony optimization and discrete-event
simulation to solve a stochastic location-routing problem. Proceedings of the
2013 Winter Simulation Conference R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill,
and M. E. Kuhl, eds.
Jacobsen SK, Madsen OBG (1978) On the location of transfer points in a two-level
newspaper delivery system – a case study. Presented at the international
symposium on locational decisions, 24–28
Jafari A., Golozari F., 2010. Application of ranking function to solve fuzzy locationrouting problem with L-R fuzzy numbers. Information and Financial
Engineering (ICIFE), 2010 2nd IEEE International Conference on Date of
Conference: 17-19 Sept. 2010 Page(s): 351-355
Jamil, M., Batta, R., Malon, D.M., 1994. The traveling repairperson home base
location problem. Transportation Science 28 (2). 150-161.
Jiang S., Ma Z., 2009. A hybrid genetic algorithm for the stochastic dynamic
location-routing-inventory problem in closed-loop logistics system for reusing
end-of-use products. International Conference on Transportation Engineering
2009. ISBN (print): 978-0-7844-1039-4.
Kenyon A. and Morton D., 2001. A survey on stochastic location routing problems.
CEJOR (2001) 9: 227-238.
Kulcar T (1996) Optimizing solid waste collection in Brussels. Eur J Oper Res
90:26–44
Laporte G. (1988). Location-routing problems, In: Golden BL, Assad AA (eds.)
Vehicle Routing: Methods and Studies, North-Holland, Amsterdan
Laporte G., Louveaux F. and Mercure H., 1992. The vehicle routing problem with
stochastic travel times. Transportation Science. Vol. 26, No. 3, August 1992
Laporte, G., Louveaux, F., Mercure, H., 1989. Models and exact solutions for a
class of stochastic location-routing problems. European Journal of Operational
Research 39, 71-78.
Lee Y, Kim S-I, Lee S, Kang K (2003) A location-routing problem in designing
optical internet access with WDM systems. Photon Netw Commun 6:151–160
Lenstra J., Kan R. (1981). Complexity of vehicle routing problem with time
windows. Networks, 11, 221-227.
Li H., Ma Z., and Wang Ch., 2008. The stochastic location-routing-inventory
problem in reverse logistics systems for municipal solid waste. Logistics : The
Emerging Frontiers of Transportation and Development in China. ISBN (print):
978-0-7844-0996-1.
Lin CKY, Chow CK, Chen A (2002) A location-routing-loading problem for bill
delivery services. Comput Ind Eng 43:5–25
Liu, S., Lee, S., 2003. A two-phase heuristic method for the multi-depot location
routing problem taking inventory control decisions into consideration. The
International Journal of Advanced Manufacturing Technology, 2003,
Vol.22(11), pp.941-950.
Liu H., Zhang Q., Wang W., 2011. Research on location-routing problem of reverse
logistics with grey recycling demands based on PSO. Grey Systems: Theory
and Application, Vol. 1 Iss: 1, pp.97 – 104
Ma Z., Dai Y., 2007. A Stochastic location-routing-inventory problem in logistics
distribution systems. International Conference on Transportation Engineering
2007. ISBN (print): 978-0-7844-0932-9
Ma Z., Dai Y., Li H., Wang Ch., 2008. A fuzzy location-routing-inventory problem in
logistics distribution systems. Logistics : The Emerging Frontiers of
Transportation and Development in China. ISBN (print): 978-0-7844-0996-1
Ma Z., Dai Y., 2010. Stochastic dynamic location-routing-inventory problem in twoechelon multi-product distribution systems. International Conference of Logistics Engineering and Management (ICLEM) 2010. ISBN (print): 978-0-
7844-1139-1 Publisher: American Society of Civil Engineers
Ma H., Yang X., Zhang D., 2010. The research into ILRIP for single-stage logistics
distribution network under stochastic demand based on JITD. Service
Systems and Service Management (ICSSSM), 2010 7th International
Conference on Date of Conference: 28-30 June 2010
McDiarmid C., 1992. Probability modelling and optimal location of a Travelling
Salesman. J. Opt Res. Soc. Vol. 43, No. 5, pp. 533-538
Min H., Jayaraman V. and Srivastava R., 1998. location-routing problems: A
research directions. European Journal of Operational Research 108 (I 998) I -
I5
Mosheiov G., 1995. The pickup delivery location problem on networks. Networks
Volume 26, Issue 4, pages 243–251, December 1995.
Murty KG, Djang PA (1999) The U.S. army national guard’s mobile training
simulators location and routing problem. Oper Res 47:175–182
Nambiar JM, Gelders LF, Van Wassenhove LN (1989) Plant location and vehicle
routing in the Malaysian rubber smallholder sector: a case study. Eur J Oper
Res 38:14–26
Nagy g. And salhy s., 2006. Location-routing: issues, models and methods.
European journal of operational research 177 (2007) 649–672.
Or I, Pierskalla WP (1979) A transportation, location-allocation model for regional
blood banking. AIIE Trans 11:86–95
Perl J, Daskin MS (1985) A warehouse location-routing problem. Transp Res
5:381–396
Perl J, Daskin MS (1985) A warehouse location-routing problem. Transp Res
5:381–396
M. Reimann, K. Doerner, R.F. Hartl, D-ants: savings based ants divide and
conquer the vehicle routing problems, Comput. Oper. Res. 31 (4) (2004) 563–
591.
Sajjadi, S., 2008. Integrated supply chain: multi products location routing problem
integrated with inventory under stochastic demand. Wichita State University,
College of Engineering, Dept. of Industrial and Manufacturing Engineering
Includes bibliographic references (leaves 128-135)
Sajjadi, S., Cheraghi, S., 2008. Uncertain location routing problem (LRP) integrated
to inventory considering space limitation. Proceedings: 4th Annual
Symposium: Graduate Research and Scholarly Projects [79] Conference
proceedings held at the Eugene Hughes Metropolitan Complex, Wichita State
University, April 25, 2008. Symposium Chair: David M. Eichhorn
Sajjadi S., Cheraghi S., 2011. Multi-products location–routing problem integrated
with inventory under stochastic demand Int. J. of Industrial and Systems
Engineering, 2011, Vol 7 Issue 4, pp 454 – 476.
Semet F, Taillard E (1993) Solving real-life vehicle routing problems efficiently
using tabu search. Ann Oper Res 41:469–488
Simchi-Levi, D., 1991. The capacitated traveling salesmen location problem.
Transportation Science 25, 9- 18
Simchi-Levi, D., Berman, 0.. 1988. A heuristic algorithm for the traveling salesman
location problem on networks. European Journal of Operational Research 36,
478-484
Song R., He S., Zhang L., 2009. Optimum transit operations during the emergency
evacuations. J transpn sys eng & it, 2009, 9(6), 154-160.
Toth P., Vigo D. 2002. The vehicle routing problem. SIAM monographs on discrete
matemathics and applications, Philadelphia, PA, USA
Vidovic m., hwang h., hwan kim k., 2003. Locating depots for empty containers as
a probabilistic location routing problem with balancing demand. The
international journal of transport & logistics udc: 621.796: 65.011.56
Wang Ch., Ma Z., Li H., 2008. Stochastic dynamic location-routing-inventory
problem in closed-loop logistics system for reusing end-of-use products.
Intelligent Computation Technology and Automation (ICICTA), 2008
International Conference on Date of Conference: 20-22 Oct. 2008.
Wang Sh., Ma Z., 2010. Stochastic location-routing model and algorithm in
emergency distribution by airlift. Jisuanji Yingyong / Journal of Computer
Applications. Vol. 30, no. 12, pp. 3207-3210. Dec 2010.
Wang Sh., Ma Z., Feng Y., 2010. A location-routing model on relief distribution
centers in earthquake disasters. ICLEM 2010: Logistics For Sustained
Economic Development: Infrastructure, Information, Integration. ISBN (print):
978-0-7844-1139-1.
Wang sh., Ma z., 2011. Fuzzy dynamic lrp with time windows in post-earthquake
emergency logistics systems. Operations research and management science
2011-05. Cnki:sun:ycgl.0.2011-05-013.
Wasner M, Zäpfel G (2004) An integrated multi-depot hub location vehicle routing
model for network planning of parcel service. Int J Prod Econ 90:403–419
Watson-Gandy CDT, Dohrn PJ (1973) Depot location with van salesmen – a
practical approach. Omega 11:321–329
Yang W., Mathur K., Ballou R. Stochastic vehicle routing problem with restocking
Transportation Science pp. 99-112, Vol. 34, No.1 February 2000.
Ye W., Li Q., 2007. Solving the stochastic location-routing problem with genetic
algorithm. Management Science and Engineering, 2007. ICMSE 2007.
Zuo-Jun M., Lian Q., 2007. Incorporating inventory and routing costs in strategic
location models. European Journal of Operational Research Volume 179,
Issue 2, 1 June 2007, Pages 372–389.
258796
TE06313
Autor
Montoya Torres, Jairo Rafael
Institución
Resumen
El problema de localización-ruteo estocástico (SLRP por sus siglas en inglés) es un problema muy común en empresas de manufactura, comercializadoras y transportadoras. El problema consiste en simultáneamente localizar uno o varios depósitos centrales entre un conjunto de ubicaciones potenciales, determinar un tamaño de flota y diseñar rutas para cada unos de los vehículos para visitar un conjunto de clientes considerando la incertidumbre que existe en algunos aspectos de la operación. En las soluciones presentadas en la literatura para este tipo de problemas se ha considerado mayoritariamente soluciones determinísticas o las soluciones estocásticas presentadas solo consideran en su mayoría la demanda como componente estocástico del sistema. La presente investigación propone un modelo para resolver la versión estocástica con incertidumbre en los costos de transporte y velocidades de los vehículos a través de un enfoque jerárquico de dos fases basado tanto en optimización como en simulación de eventos discretos. Se presenta una estrategia de selección aleatoria en la fase de localización; la fase de ruteo se resuelve empleando un algoritmo basado en colonia de hormigas, y finalmente se incluye al modelo el comportamiento estocástico del sistema a través de simulación de eventos discretos. Se presenta un análisis comparativo para validar la calidad de las soluciones obtenidas por el algoritmo y se realiza un estudio experimental permitiendo el análisis estadístico de resultados. Los resultados obtenidos permiten validar el presente enfoque como una buena herramienta de apoyo a la toma de decisiones para la localización de centros de distribución, la determinación de flotas de vehículos, la asignación de zonas de servicio y el ruteo de vehículos.