bachelorThesis
Participación de la corteza infralímbica en la tarea de discriminación simple de olores en ratas
Fecha
2014-04-24Registro en:
Akirav, I., Raizel, H., & Maroun, M. (2006). Enhancement of conditioned fear extinction by
infusion of the GABAA agonist muscimol into the rat prefrontal cortex and amygdala.
23(3), 758-764.
Amargós-Bosch, M., Bortolozzi, A., Puig, M. V., Serrats, J., Adell, A., Celada, P., & Artigas, F.
(2004). Co-expression and in vivo interaction of serotonin1A and serotonin2A receptors
in pyramidal neurons of prefrontal cortex. 14(3), 281-299
Andrade, R. (2011). Serotonergic regulation of neuronal excitability in the prefrontal cortex.
Neuropharmacology, 61(3), 382-386. doi: 10.1016/j.neuropharm.2011.01.015
Baddeley, A. D., & Hitch, G. J. (1994 ). Developments in the concept of working memory. . 8(4),
485. doi:10.1037/0894-4105.8.4.485
Ball, K. T., & Slane, M. (2012). Differential involvement of prelimbic and infralimbic medial
prefrontal cortex in discrete cue-induced reinstatement of 3,4-
methylenedioxymethamphetamine (MDMA; ecstasy) seeking in rats. Psychopharmacology, 224(3), 377-385. doi: 10.1007/s00213-012-2762-5
Bechara, A., Tranel, D., & Damasio, H. (2000). Characterization of the decision-making deficit of
patients with ventromedial prefrontal cortex lesions. Brain, 123(11).
Birrell, J. M., & Brown, V. J. (2000). Medial frontal cortex mediates perceptual attentional set
shifting in the rat. 20(11), 4320-4324.
Boulougouris, V., Dalley, J. W., & Robbins, T. W. (2007). Effects of orbitofrontal, infralimbic and
prelimbic cortical lesions on serial spatial reversal learning in the rat. Behavioural Brain
Research, 179(2), 219-228. doi: 10.1016/j.bbr.2007.02.005
Braquehais, M. D., Ramos-Quiroga, J. A., & Sher, L. (2010). Impulsivity: current and future trends
in pharmacological treatment. Expert Review of Neurotherapeutics, 10(9), 1367-1369.
doi: 10.1586/ern.10.100
Brown, S. M., Manuck, S. B., Flory, J. D., & Hariri, A. R. (2006). Neural basis of individual
differences in impulsivity: Contributions of corticolimbic circuits for behavioral arousal
and control. Emotion, 6(2), 239-245. doi: 10.1037/1528-3542.6.2.239
Burgos-Robles, A., Bravo-Rivera, H., & Quirk, G. J. (2013). Prelimbic and Infralimbic Neurons
Signal Distinct Aspects of Appetitive Instrumental Behavior. Plos One, 8(2). doi:
10.1371/journal.pone.0057575
Bussey TJ, M. J., Everitt BJ, Robbins TW. (1997). Triple dissociation of anterior cingulate,
posterior cingulate, and medial frontal cortices on visual discrimination tasks using a
touchscreen testing procedure for the rat. Behavioral Neuroscience 111.((5)), 920-936.
Chang, C.-h., & Maren, S. (2010). Strain difference in the effect of infralimbic cortex lesions on
fear extinction in rats. Behavioral Neuroscience, 124(3), 391-397. doi: 10.1037/a0019479
Chudasama, Y., Passetti, F., Rhodes, S. E. V., Lopian, D., Desai, A., & Robbins, T. W. (2004).
Dissociable aspects of performance on the 5-choice serial reaction time task following
lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat:
differential effects on selectivity, impulsivity and compulsivity (vol 146, pg 105, 2003).
Behavioural Brain Research, 152(2), 453-453. doi: 10.1016/j.bbr.2004.03.014
Ciaramelli, E., & Spaniol, J. (2009). Ventromedial prefrontal damage and memory for context:
Perceptual versus semantic features. Neuropsychology, 23(5), 649-657. doi:
10.1037/a0015937
Clark, nbsp, Bechara, Damasio, Aitken, Sahakian, & Robbins. (2008). Differential effects of
insular and ventromedial prefrontal cortex lesions on risky decision-making. Brain,
131(5).
Contreras, D., Catena, A., Candido, A., Perales, J. C., & Maldonado, A. (2008). The role of
ventromedial prefrontal cortex in emotional decision-making. International Journal of
Clinical and Health Psychology, 8(1), 285-313.
Cools, R., Nakamura, K., & Daw, N. D. (2011). Serotonin and Dopamine: Unifying Affective,
Activational, and Decision Functions. Neuropsychopharmacology, 36(1), 98-113. doi:
10.1038/npp.2010.121
Clark, nbsp, Bechara, Damasio, Aitken, Sahakian, & Robbins. (2008). Differential effects of
insular and ventromedial prefrontal cortex lesions on risky decision-making. Brain,
131(5).
Contreras, D., Catena, A., Candido, A., Perales, J. C., & Maldonado, A. (2008). The role of
ventromedial prefrontal cortex in emotional decision-making. International Journal of
Clinical and Health Psychology, 8(1), 285-313.
Cools, R., Nakamura, K., & Daw, N. D. (2011). Serotonin and Dopamine: Unifying Affective,
Activational, and Decision Functions. Neuropsychopharmacology, 36(1), 98-113. doi:
10.1038/npp.2010.121
Cowan, N. (2008). What are the differences between long-term, short-term, and working
memory?. 169, 323-338
Dalley, J. W., Cardinal, R. N., & Robbins, T. W. (2004). Prefrontal executive and cognitive
functions in rodents: neural and neurochemical substrates. Neuroscience and
Biobehavioral Reviews, 28(7), 771-784. doi: 10.1016/j.neubiorev.2004.09.006
De Bartolo, P., Mandolesi, L., Federico, F., Foti, F., Cutuli, D., Gelfo, F., & Petrosini, L. (2009).
Cerebellar involvement in cognitive flexibility. Neurobiology of Learning and Memory,
92(3), 310-317. doi: 10.1016/j.nlm.2009.03.008
Delatour, B., & Gisquest-Verrier, P. (1999). Lesions of the prelimbic–infralimbic cortices in rats
do not disrupt response selection processes but induce delay-dependent deficits:
Evidence for a role in working memory?. . 113(5), 941
Fellows, L. K., & Farah, M. J. (2003). Ventromedial frontal cortex mediates affective shifting in
humans: evidence from a reversal learning paradigm. Brain, 126(8).
Fellows, L. K., & Farah, M. J. (2007). The role of ventromedial prefrontal cortex in decision
making: Judgment under uncertainty or judgment per se? Cerebral Cortex, 17(11), 2669-
2674. doi: 10.1093/cercor/bhl176
Fitzgerald, P. (2011). A neurochemical yin and yang: does serotonin activate and norepinephrine
deactivate the prefrontal cortex? Psychopharmacology, 213, 171–182.
Fontanez-Nuin, D. E., Santini, E., Quirk, G. J., & Porter, J. T. (2011). Memory for Fear Extinction
Requires mGluR5-Mediated Activation of Infralimbic Neurons. Cerebral Cortex, 21(3),
727-735. doi: 10.1093/cercor/bhq147
Fuster, J. M. (2001). The prefrontal cortex - An update: time is of the essence. Neuron, 30(2),
319-333. doi: 10.1016/s0896-6273(01)00285-9
Haddon, J. E., & Killcross, S. (2011). INACTIVATION OF THE INFRALIMBIC PREFRONTAL CORTEX IN
RATS REDUCES THE INFLUENCE OF INAPPROPRIATE HABITUAL RESPONDING IN A
RESPONSE-CONFLICT TASK. Neuroscience, 199, 205-212. doi:
10.1016/j.neuroscience.2011.09.065
Heidbreder, C. A., & Groenewegen, H. J. (2003). The medial prefrontal cortex in the rat: evidence
for a dorso-ventral distinction based upon functional and anatomical characteristics.
Neuroscience and Biobehavioral Reviews, 27(6), 555-579. doi:
10.1016/j.neubiorev.2003.09.003
Herkenham, M., & Nauta, W. J. H. (1979). Efferent connections of the habenular nuclei in the
rat. The Journal of Comparative Neurology, 187(1), 19-47. doi: 10.1002/cne.901870103
Herold, C. (2010). NMDA and D2-Like Receptors Modulate Cognitive Flexibility in a Color
Discrimination Reversal Task in Pigeons. Behavioral Neuroscience, 124(3), 381-390. doi:
10.1037/a0019504
Hess, U. S., Gall, C. M., Granger, R., & Lynch, G. (1997). Differential patterns of c-fos mRNA
expression in amygdala during successive stages of odor discrimination learning. 4(3),
262-283.
Hoover, W., & Vertes, R. (2007). Anatomical analysis of afferent projections to the medial
prefrontal cortex in the rat. Brain Structure and Function, 212(2), 149-179. doi:
10.1007/s00429-007-0150-4
Hoover, W. B., & Vertes, R. P. (2012). Collateral projections from nucleus reuniens of thalamus
to hippocampus and medial prefrontal cortex in the rat: a single and double retrograde
fluorescent labeling study. Brain Structure & Function, 217(2), 191-209. doi:
10.1007/s00429-011-0345-6
Kesner, R. P. (2000). Subregional analysis of mnemonic functions of the prefrontal cortex in the
rat. . 28, 219–228
Kosaki, Y., & Watanabe, S. (2012). Dissociable roles of the medial prefrontal cortex, the anterior
cingulate cortex, and the hippocampus in behavioural flexibility revealed by serial
reversal of three-choice discrimination in rats. Behavioural Brain Research, 227(1), 81-
90. doi: 10.1016/j.bbr.2011.10.039
Krettek, J. E., & Price, J. L. (1977). The cortical projections of the mediodorsal nucleus and
adjacent thalamic nuclei in the rat. The Journal of Comparative Neurology, 171(2), 157-
191. doi: 10.1002/cne.901710204
Kublik, E., & Sara, S. J. Activity in medial frontal cortex during odour discrimination learning in
the rat: Neuronal response to experimental cortex. 1, 1-40.
Kuipers, R., Mensinga, G. M., Boers, J., Klop, E. M., & Holstege, G. (2006). Infralimbic cortex
projects to all parts of the pontine and medullary lateral tegmental field in cat. European
Journal of Neuroscience, 23(11), 3014-3024. doi: 10.1111/j.1460-9568.2006.04843.x
Laidlaw, A. H., Browman, E. M., & Brown, V. J. (2004). Depletion of serotonin by ICV 5,7-DHT
increases reaction time but not impulsivity in a cued reaction time task. Journal of
Psychopharmacology, 18(3), A32-A32.
Laureiro-Martínez, D., Brusoni, E., & Zollo, M. (2009). Cognitive Flexibility in Decision Making a
Neurologial Model of Learning and Change. CROMA - Center for Research in
Organization and Management - Bocconi University 1, 1-43.
Leshem, R., & Glicksohn, J. (2007). The construct of impulsivity revisited. Personality and
Individual Differences, 43(4), 681-691. doi: 10.1016/j.paid.2007.01.015
Maroun, M., Kavushansky, A., Holmes, A., Wellman, C., & Motanis, H. (2012). Enhanced
Extinction of Aversive Memories by High-Frequency Stimulation of the Rat Infralimbic
Cortex. Plos One, 7(5). doi: 10.1371/journal.pone.0035853
Martin, M., & Rubin, R. (1995). A new measure of cognitive flexibility. Psychological Reports,
76(623–6).
Morgane, P. J., Galler, J. R., & Mokler, D. J. (2005). A review of systems and networks of the
limbic forebrain/limbic midbrain. Progress in Neurobiology, 75(2), 143-160. doi:
10.1016/j.pneurobio.2005.01.001
Murphy, E., Dalley, J., & Robbins, T. (2005). Local glutamate receptor antagonism in the rat
prefrontal cortex disrupts response inhibition in a visuospatial attentional task.
Psychopharmacology, 179(1), 99-107. doi: 10.1007/s00213-004-2068-3
Nelson, A. J. D., Cooper, M. T., Thur, K. E., Marsden, C. A., & Cassaday, H. J. (2011). The Effect of
Catecholaminergic Depletion Within the Prelimbic and Infralimbic Medial Prefrontal
Cortex on Recognition Memory for Recency, Location, and Objects. Behavioral
Neuroscience, 125(3), 396-403. doi: 10.1037/a0023337
Oualian, C., & Gisquet-Verrier, P. (2010). The differential involvement of the prelimbic and
infralimbic cortices in response conflict affects behavioral flexibility in rats trained in a
new automated strategy-switching task. Learning & Memory, 17(12), 654-668.
Passetti, F., Dalley, J., & Robbins, T. (2003). Double dissociation of serotonergic and
dopaminergic mechanisms on attentional performance using a rodent five-choice
reaction time task. Psychopharmacology, 165(2), 136-145. doi: 10.1007/s00213-002-
1227-7
Puig, M. V., Celada, P., & Artigas, F. (2004). Control serotoninérgico de la corteza prefrontal. . 39,
539-547.
Quiroz-Padilla, M. F., Guillazo-Blanch, G., Vale-Martinez, A., Torras-Garcia, M., & MartiNicolovius, M. (2007). Effects of parafascicular excitotoxic lesions on two-way active
avoidance and odor-discrimination. Neurobiology of Learning and Memory, 88(2), 198-
207. doi: 10.1016/j.nlm.2007.06.002
Ragozzino, M. E. (2007). The contribution of the medial prefrontal cortex, orbitofrontal cortex,
and dorsomedial striatum to behavioral flexibility. In G. Schoenbaum, J. A. Gottfried, E.
A. Murray & S. J. Ramus (Eds.), Linking Affect to Action: Critical Contributions of the
Orbitofrontal Cortex (Vol. 1121, pp. 355-375).
Ragozzino, M. E., & Kesner, R. P. (1998). The effects of muscarinic cholinergic receptor blockade
in the rat anterior cingulate and prelimbic/infralimbic cortices on spatial working
memory. . 69(3), 241-257.
Ragozzino, M. E., Kim, J., Hassert, D., Minniti, N., & Kiang, C. (2003). The contribution of the rat
prelimbic-infralimbic areas to different forms of task switching. Behavioral
Neuroscience, 117(5), 1054-1065. doi: 10.1037/0735-7044.117.5.1054
Rhodes, S. E. V., & Killcross, A. S. (2007). Lesions of rat infralimbic cortex enhance renewal of
extinguished appetitive Pavlovian responding. European Journal of Neuroscience, 25(8),
2498-2503. doi: 10.1111/j.1460-9568.2007.05486.x
Robinson, E. S. J., Dalley, J. W., Theobald, D. E. H., Glennon, J. C., Pezze, M. A., Murphy, E. R., &
Robbins, T. W. (2008). Opposing roles for 5-HT(2A) and 5-HT(2C) receptors in the nucleus
accumbens on inhibitory response control in the 5-choice serial reaction time task.
Neuropsychopharmacology, 33(10), 2398-2406. doi: 10.1038/sj.npp.1301636
Rosenkranz, J. A., & Grace, A. A. (2002). Cellular mechanisms of infralimbic and prelimbic
prefrontal cortical inhibition and dopaminergic modulation of basolateral amygdala
neurons in vivo. Journal of Neuroscience, 22(1), 324-337.
Schoenbaum, G., Chiba, A. A., & Gallagher, M. (1999). Neural encoding in orbitofrontal cortex
and basolateral amygdala during olfactory discrimination learning. . 19(5), 1876-1884.
Torras-Garcia, M., Lelong, J., Tronel, S., & Sara, S. J. (2005). Reconsolidation after remembering
an odor-reward association requires NMDA receptors. Learning & Memory, 12(1), 18-22.
doi: 10.1101/lm.80905
Tronel, S., Feenstra, M. G. P., & Sara, S. J. (2004). Noradrenergic action in prefrontal cortex in the
late stage of memory consolidation. Learning & Memory, 11(4), 453-458. doi:
10.1101/lm.74504
Tronel, S., Milekic, M. H., & Alberini, C. M. (2005). Linking new information to a reactivated
memory requires consolidation and not reconsolidation mechanisms. Plos Biology, 3(9),
1630-1638. doi: 10.1371/journal.pbio.0030293
Tronel, S., & Sara, S. J. (2002). Mapping of olfactory memory circuits: Region-specific c-fos
activation after odor-reward associative learning or after its retrieval. Learning &
Memory, 9(3), 105-111. doi: 10.1101/lm.47802
Tronel, S., & Sara, S. J. (2003). Blockade of NMDA receptors in prelimbic cortex induces an
enduring amnesia for odor-reward associative learning. Journal of Neuroscience, 23(13),
5472-5476.
Tseng, K. Y., & O'Donnell, P. (2007). D-2 dopamine receptors recruit a GABA component for their
attenuation of excitatory synaptic transmission in the adult rat prefrontal cortex.
Synapse, 61(10), 843-850. doi: 10.1002/syn.20432
Valdés, J. L., & Torrealba L, F. (2006). La corteza prefrontal medial controla el alerta conductual y
vegetativo: Implicancias en desórdenes de la conducta. 44(3). 195-204.
van Aerde, K. I., Heistek, T. S., & Mansvelder, H. D. (2008). Prelimbic and Infralimbic Prefrontal
Cortex Interact during Fast Network Oscillations. Plos One, 3(7). doi:
10.1371/journal.pone.0002725
Vazquez-Borsetti, P., Celada, P., Cortes, R., & Artigas, F. (2011). Simultaneous projections from
prefrontal cortex to dopaminergic and serotonergic nuclei. International Journal of
Neuropsychopharmacology, 14(3), 289-302. doi: 10.1017/s1461145710000349
Vertes, R. P. (2006). Interactions among the medial prefrontal cortex, hippocampus and midline
thalamus in emotional and cognitive processing in the rat. Neuroscience, 142(1), 1-20.
doi: 10.1016/j.neuroscience.2006.06.027
Winstanley, C. A., Eagle, D. M., & Robbins, T. W. (2006). Behavioral models of impulsivity in
relation to ADHD: Translation between clinical and preclinical studies. Clinical
Psychology Review, 26(4), 379-395. doi: 10.1016/j.cpr.2006.01.001
259254
TE06401
Autor
Quiroz Padilla, María Fernanda
Institución
Resumen
Este estudio evaluó la participación de la corteza infralímbica (IL) en los procesos del aprendizaje y reaprendizaje de ratas Wistar en la tarea de discriminación simple de olores. Para el logro de dicho objetivo, se realizaron lesiones bilaterales pre-entrenamiento con N-metil-D-Aspartato (NMDA) en la IL y se analizó el desempeño de los sujetos en la tarea de discriminación simple de olores (DSO) teniendo en cuenta la latencia (tiempo que tarda el animal en encontrar el reforzador en el aroma asociado), los errores (número de veces en que el animal busca el reforzador en el aroma que no ha sido asociado al refuerzo) y las omisiones (número de veces en que el animal se acerca al aroma correcto y no accede al reforzador). Los resultados muestran que en los tres primeros ensayos de la fase de adquisición, las ratas con lesión presentaron una latencia mayor que el grupo control vehículo ensayo 1: (P= 0.000); ensayo 2: (P= 0.022); ensayo 3: (P= 0.022), igualmente, presentaron un mayor número de errores y omisiones en el primer ensayo (P=0,000). Nota: Para consultar la carta de autorización de publicación de este documento por favor copie y pegue el siguiente enlace en su navegador de internet: http://hdl.handle.net/10818/10360