masterThesis
Determinación de la relación entre parámetros de proceso y rendimiento de obtención de biodiesel a partir de aceites de cocina usados, con base en meta-análisis
Fecha
2014Registro en:
Abbaszaadeh, A., Ghobadian, B., Omidkhah, M. R., & Najafi, G. (2012). Current biodiesel production technologies: A comparative review. Energy Conversion and Management, 63, 138–148. doi:10.1016/j.enconman.2012.02.027
Abd Rabu, R., Janajreh, I., & Honnery, D. (2013). Transesterification of waste cooking oil: Process optimization and conversion rate evaluation. Energy Conversion and Management, 65, 764–769. doi:10.1016/j.enconman.2012.02.031
Abuhabaya, A., Fieldhouse, J., & Brown, D. (2013a). Influence of production variables for biodiesel synthesis on yields and fuel properties, and optimization of production conditions. Fuel, 103, 963–969. doi:10.1016/j.fuel.2012.09.067
Abuhabaya, A., Fieldhouse, J., & Brown, D. (2013b). The optimization of biodiesel production by using response surface methodology and its effect on compression ignition engine. Fuel Processing Technology, 113, 57–62. doi:10.1016/j.fuproc.2013.03.025
Agarwal, M., Singh, K., Upadhyaya, S., & Chaurasia, S. P. (2011). Effect of Reaction Parameters on Yield and Characteristics of Biodiesel Obtained from Various Vegetable Oils. www.conference.Net.Au/Chemeca.
Akgün, N., & Dere, G. (2007). Evaluation Of Biodiesel Production Using Experimental, (212), 259–267.
Akgün, N., & İşcan, E. (2007). Effects of process variables for biodiesel production by transesterification. European Journal of Lipid Science and Technology, 109(5), 486– 492. doi:10.1002/ejlt.200600210
Akhihiero, E. T., Oghenejoboh, K. M., & Umukoro, P. O. (2013). Effects of Process Variables on Transesterification Reaction of Jatropha Curcas Seed Oil for the Production of Biodiesel, 3(6), 388–393.
Aldape, A., Valles, A., Velasquez, S., & Soto, L. (2010). Aplicación del Meta-Análisis en la Ingeniería. In Congreso Internacional de Investigación de Academia Journals.com (p. Volimen IV pag 3–10).
Alsoudy, A., Thomsen, M. H., & Janajreh, I. (2012). Influence On Process Parameters In Transesterification Of Vegetable And Waste Oil – A Review. International Journal of Research and Reviews in Applied Sciences, 10(January), 64–77.
Anya, A. U., Chioma, N. N., & Obinna, O. (2012). Optimized Reduction Of Free Fatty Acid Content On Neem Seed Oil , For Biodiesel Production, 2(4), 21–28.
Atadashi, I. M., Aroua, M. K., Abdul Aziz, a. R., & Sulaiman, N. M. N. (2012). The effects of water on biodiesel production and refining technologies: A review. Renewable and Sustainable Energy Reviews, 16(5), 3456–3470. doi:10.1016/j.rser.2012.03.004
Atadashi, I. M., Aroua, M. K., Abdul Aziz, a. R., & Sulaiman, N. M. N. (2013). The effects of catalysts in biodiesel production: A review. Journal of Industrial and Engineering Chemistry, 19(1), 14–26. doi:10.1016/j.jiec.2012.07.009
Atapour, M., Kariminia, H.-R., & Moslehabadi, P. M. (2013). Optimization of biodiesel production by alkali-catalyzed transesterification of used frying oil. Process Safety and Environmental Protection, (November 2011), 1–7. doi:10.1016/j.psep.2012.12.005
Awad, S., Basa, I., Paraschiv, M., Kumar, S., & Tazerout, M. (2010). Characterisation And Optimisation Of Biodiesel ’ S Production From Waste Cooking Oil. U.P.P. Sciencies Bulletin. Series C, Vol 72, 72, 3–12.
Ayoola, A., Hymore, F., Obande, M., & Ifeoma, U. (2012). Optimization of Experimental Conditions for Biodiesel Production. International Journal of Engineering & Technology, 12(06), 130–133.
Banerjee, a., & Chakraborty, R. (2009). Parametric sensitivity in transesterification of waste cooking oil for biodiesel production—A review. Resources, Conservation and Recycling, 53(9), 490–497. doi:10.1016/j.resconrec.2009.04.003
Bautista, L. F., Vicente, G., Rodríguez, R., & Pacheco, M. (2009). Optimisation of FAME production from waste cooking oil for biodiesel use. Biomass and Bioenergy, 33(5), 862–872. doi:10.1016/j.biombioe.2009.01.009
Berrios, M., Gutiérrez, M. C., Martín, M. a., & Martín, a. (2010). Obtaining biodiesel from spanish used frying oil: Issues in meeting the EN 14214 biodiesel standard. Biomass and Bioenergy, 34(3), 312–318. doi:10.1016/j.biombioe.2009.11.002
Betiku, E., & Adepoju, T. F. (2013). Methanolysis optimization of sesame (Sesamum indicum) oil to biodiesel and fuel quality characterization. International Journal of Energy and Environmental Engineering, 4(1), 9. doi:10.1186/2251-6832-4-9
Boonmee, K., Chuntranuluck, S., Punsuvon, V., & Silayoi, P. (2010). Optimization of Biodiesel Production from Jatropha Oil ( Jatropha curcas L .) using Response Surface Methodology, 299, 290–299.
Borges, M. E., & Díaz, L. (2012). Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review. Renewable and Sustainable Energy Reviews, 16(5), 2839–2849. doi:10.1016/j.rser.2012.01.071
Borugadda, V. B., & Goud, V. V. (2012). Biodiesel production from renewable feedstocks: Status and opportunities. Renewable and Sustainable Energy Reviews, 16(7), 4763– 4784. doi:10.1016/j.rser.2012.04.010
Canakci, M., & Van Gerpen, J. (2001). A Pilot Plant to Produce Biodiesel from High Free Fatty Acid Feedstocks. American Society of Agricultural Engineers, 46(4), 945–954.
Çaylı, G., & Küsefoğlu, S. (2008). Increased yields in biodiesel production from used cooking oils by a two step process: Comparison with one step process by using TGA. Fuel Processing Technology, 89(2), 118–122. doi:10.1016/j.fuproc.2007.06.020
Cerveró, J. M., Coca, J., & Luque, S. (2008). Production of biodiesel from vegetable oils. Grasas y Aceites, 59(1), 76–83. doi:10.3989/gya.2008.v59.i1.494
Charoenchaitrakool, M., & Thienmethangkoon, J. (2011). Statistical optimization for biodiesel production from waste frying oil through two-step catalyzed process. Fuel Processing Technology, 92(1), 112–118. doi:10.1016/j.fuproc.2010.09.012
Chhetri, A. B., Watts, K. C., & Islam, M. R. (2008). Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production. Energies, 1(1), 3–18. doi:10.3390/en1010003
Cvengroš, J., & Cvengrošová, Z. (2004). Used frying oils and fats and their utilization in the production of methyl esters of higher fatty acids. Biomass and Bioenergy, 27(2), 173–181. doi:10.1016/j.biombioe.2003.11.006
Demirbas, A. (2002). Biodiesel from vegetable oils via transesterification in supercritical methanol, 43, 2349–2356.
Demirbas, A. (2005). Biodiesel production from vegetable oils via catalytic and noncatalytic supercritical methanol transesterification methods. Progress in Energy and
Combustion Science, 31(5-6), 466–487. doi:10.1016/j.pecs.2005.09.001
Dias, J. M., Alvim-Ferraz, M. C. M., & Almeida, M. F. (2008). Comparison of the
performance of different homogeneous alkali catalysts during transesterification of
waste and virgin oils and evaluation of biodiesel quality. Fuel, 87(17-18), 3572–3578.
doi:10.1016/j.fuel.2008.06.014
Dias, J. M., Alvim-Ferraz, M. C. M., & Almeida, M. F. (2009). Production of biodiesel
from acid waste lard. Bioresource technology, 100(24), 6355–61.
doi:10.1016/j.biortech.2009.07.025
Dias, J. M., Ferraz, C. A., & Almeida, M. F. (2008). Using Mixtures of Waste Frying Oil
and Pork Lard to produce Biodiesel, 258–262.
El Boulifi, N., Bouaid, a., Martinez, M., & Aracil, J. (2010). Process Optimization for
Biodiesel Production from Corn Oil and Its Oxidative Stability. International Journal
of Chemical Engineering. doi:10.1155/2010/518070
Enweremadu, C. C., & Mbarawa, M. M. (2009). Technical aspects of production and
analysis of biodiesel from used cooking oil—A review. Renewable and Sustainable
Energy Reviews, 13(9), 2205–2224. Doi:10.1016/J.Rser.2009.06.007
Fan, X. (2008). Oil And Waste Vegetable Oil : Conventional And Ultrasonic By.
Felizardo, P., Correia, M. J. N., Raposo, I., Mendes, J. F., Berkemeier, R., & Bordado, J.
M. (2006). Production of biodiesel from waste frying oils. Waste management (New
York, N.Y.), 26(5), 487–94. doi:10.1016/j.wasman.2005.02.025
Fernández Melcón, C. D., & Piñeiro Barcia, M. (n.d.). Superficies de respuesta. Métodos y
diseño.
Freedman, B., Pryde, E. H., Mounts, T. L., & Regional, N. (1984). , Variables Affecting the
Yields of Fatty Esters from Transesterified Vegetable Oils 1, 61(10), 1638–1643.
Gnanaprakasam, A., Sivakumar, V. M., Surendhar, A., Thirumarimurugan, M., &
Kannadasan, T. (2013). Recent Strategy of Biodiesel Production from Waste Cooking
Oil and Process Influencing Parameters: A Review. Journal of Energy, 2013, 1–10.
doi:10.1155/2013/926392
Goyal, P., Sharma, M. P., & Jain, S. (2012). Optimization of Esterification and
Transesterification of High FFA Jatropha Curcas Oil Using Response Surface
Methodology. Journal of Petroleum Science Research, 1(3), 36–43.
Guerrero, C. A., Guerrero-romero, A., & Sierra, F. E. (2010). Biodiesel Production from
Waste Cooking Oil. In Biodiesel (pp. 23–44).
Guerrero, C., Parra, J., & Sierra, F. (2013). Optimization Of Biodiesel Production Process
For Homogeneous Catalysis From Used Cooking Oil, (11).
Guerrero P, A., Anguebes, F., Cordoba., V., & Rovira G., I. (2010). Aceite vegetal usado
como recurso renovable para la síntesis de biodiesel. Ingenieria Quimica, 506, 70–74.
Hirkude, J., Padalkar, A., Shaikh, S., & Veigas, A. (2013). Effect of Compression Ratio on
Performance of CI Engine Fuelled with Biodiesel from Waste Fried Oil Using
Response Surface Methodology. International Journal of Energy Engineering, 3(5),
227–233. doi:10.5923/j.ijee.20130305.01
Hoque, M. E., Singh, A., & Chuan, Y. L. (2011). Biodiesel from low cost feedstocks: The
effects of process parameters on the biodiesel yield. Biomass and Bioenergy, 35(4),
1582–1587. doi:10.1016/j.biombioe.2010.12.024
Hossain, A. B. M. S., & Al-Saif, A. . (2010). Biodiesel fuel production from soybean oil
waste as agricultural bio-resource Butanol Ethanol Methanol Different alcohol.
Australian Journal of Crop Science, 4(7), 538–542.
Hossain, A. B. M. S., & Boyce, A. N. (2009). Biodiesel production from waste sunflower
cooking oil as an environmental recycling process and renewable energy. Bulgarian
Journal of Agricultural Science, 15(4), 312–317.
Hossain, A. B. M. S., Boyce, A. N., Salleh, A., & Chandran, S. (2010). Impacts of alcohol
type , ratio and stirring time on the biodiesel production from waste canola oil. African
Journal of Agricultural Research, 5(14), 1851–1859. doi:10.5897/AJAR09.135
Hossain, A. B. M. S., & Mazen, M. A. (2010). Effects of catalyst types and concentrations
on biodiesel production from waste soybean oil biomass as renewable energy and
environmental recycling process. Australian Journal of Crop Science, 4(7), 550–555.
Hossain, A. B. M. S., & Mekhled, M. A. (2010). Biodiesel fuel production from waste
canola cooking oil as sustainable energy and environmental recycling process.
Australian Journal of Crop Science, 4(7), 543–549.
Issariyakul, T., Kulkarni, M. G., Meher, L. C., Dalai, A. K., & Bakhshi, N. N. (2008).
Biodiesel production from mixtures of canola oil and used cooking oil. Chemical
Engineering Journal, 140(1-3), 77–85. doi:10.1016/j.cej.2007.09.008
Jain, S., Sharma, M. P., & Rajvanshi, S. (2011). Acid base catalyzed transesterification
kinetics of waste cooking oil. Fuel Processing Technology, 92(1), 32–38.
doi:10.1016/j.fuproc.2010.08.017
Jazie, A. A., Sinha, A. S. K., & Pramanik, H. (2011). Optimization Of Biodiesel Production
From Peanut And Rapeseed Oils Using Response Surface Methodology. International
Journal of Biomass & renewables, 9–18.
Jeong, G.-T., & Park, D.-H. (2009). Optimization of Biodiesel Production from Castor Oil
using Responde Surface Methodology. Applied Biochemistry and Biotechnology,
(156), 431–441.
Jeong, G.-T., Yang, H.-S., & Park, D.-H. (2009). Optimization of transesterification of
animal fat ester using response surface methodology. Bioresource technology, 100(1),
25–30. doi:10.1016/j.biortech.2008.05.011
Karabas, H. (2010). Optimization of the Parameters Affecting on the Conversion Rate of
the Used Frying Oil. Akademik Platform, 672–678.
Karnwal, A., Kumar, N., Hasan, M. M., Chaudhary, R., Siddiquee, A. N., & Khan, Z. A.
(2010). Production of Biodiesel from Thumba Oil : Optimization of Process
Parameters, 1(4), 352–358.
Kasim, F. H., & Harvey, A. P. (2011). Influence of various parameters on reactive
extraction of Jatropha curcas L. for biodiesel production. Chemical Engineering
Journal, 171(3), 1373–1378. doi:10.1016/j.cej.2011.05.050
Keera, S. T., El Sabagh, S. M., & Taman, a. R. (2011). Transesterification of vegetable oil
to biodiesel fuel using alkaline catalyst. Fuel, 90(1), 42–47.
doi:10.1016/j.fuel.2010.07.046
Kiar, L. P., Skovgaard, I. M., & Ostergard, H. (2009). Grain yield increase in cereal variety
mixtures: A meta-analysis of field trials. Field Crops Research, 114(3), 361–373.
doi:10.1016/j.fcr.2009.09.006
Kılıç, M., Uzun, B. B., Pütün, E., & Pütün, A. E. (2013). Optimization of biodiesel
production from castor oil using factorial design. Fuel Processing Technology, 111,
105–110. doi:10.1016/j.fuproc.2012.05.032
Kraemer Wermelinger, V., Araujo, S., Hamacher, S., & Scavarda, L. F. (2010). Economic
assessment of biodiesel production from waste frying oils. Bioresource technology,
101(12), 4415–22. doi:10.1016/j.biortech.2010.01.101
Krishnan, D., & Dass, D. M. (2012). A kinetic study of biodiesel in waste cooking oil.
African Journal of Biotechnology, 11(41), 9797–9804. doi:10.5897/AJB12.507
Kumaran, P., Mazlini, N., Hussein, I., Nazrain, M., & Khairul, M. (2011). Technical
feasibility studies for Langkawi WCO (waste cooking oil) derived-biodiesel. Energy,
36(3), 1386–1393. doi:10.1016/j.energy.2011.02.002
Lam, M. K., & Lee, K. T. (2011). Mixed methanol–ethanol technology to produce greener
biodiesel from waste cooking oil: A breakthrough for SO42−/SnO2–SiO2 catalyst.
Fuel Processing Technology, 92(8), 1639–1645. doi:10.1016/j.fuproc.2011.04.012
Lam, M. K., Lee, K. T., & Mohamed, A. R. (2010). Homogeneous, heterogeneous and
enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil)
to biodiesel: a review. Biotechnology advances, 28(4), 500–18.
doi:10.1016/j.biotechadv.2010.03.002
Lee, H. V., Yunus, R., Juan, J. C., & Taufiq-Yap, Y. H. (2011). Process optimization
design for jatropha-based biodiesel production using response surface methodology.
Fuel Processing Technology, 92(12), 2420–2428. doi:10.1016/j.fuproc.2011.08.018
Legates, D., & McCabe, G. (1999). Evaluating the use of “goodness-of-fit” measures in
hydrologic and hydroclimatic model validation. Water Resources Research, 35(1),
233–241.
Lei, X., Peng, C., Tian, D., & SUN, J. (2007). Meta-analisis & application global change
research china 2007. Chinese Science Bulletin, 52(3), 289–302.
Lenth, R. V. (2009). Response-Surface Methods in R , Using rsm. Journal of Statistical
Software, 32(7).
Leung, D. Y. C., & Guo, Y. (2006). Transesterification of neat and used frying oil:
Optimization for biodiesel production. Fuel Processing Technology, 87(10), 883–890.
doi:10.1016/j.fuproc.2006.06.003
Li, J., Fu, Y.-J., Qu, X.-J., Wang, W., Luo, M., Zhao, C.-J., & Zu, Y.-G. (2012). Biodiesel
production from yellow horn (Xanthoceras sorbifolia Bunge.) seed oil using ion
exchange resin as heterogeneous catalyst. Bioresource technology, 108, 112–8.
doi:10.1016/j.biortech.2011.12.129
Liao, C.-C., & Chung, T.-W. (2011). Analysis of parameters and interaction between
parameters of the microwave-assisted continuous transesterification process of
Jatropha oil using response surface methodology. Chemical Engineering Research and
Design, 89(12), 2575–2581. doi:10.1016/j.cherd.2011.06.002
Longlong, M. A., Pengmei, L. U., Lianhua, L. I., Wen, L. U. O., & Xiaoying, K. (2008).
Biodiesel Production from different Feedstocks in Pilot Scale System. iodiesel
Production from different Feedstocks in Pilot Scale System, October(Special), 16–21.
Ma, F., & Hanna, M. A. (1999). Biodiesel production : a review 1. Biosource Technology,
70, 1–15.
Ma, F., L.D., C., & Milford, H. (1998). The Effects of Catalyst , Free Fatty Acids , and
Water on Transecterification of Beef Tallow. DigitalCommons@University of
Nebraska - Lincoln, 1(1)
Manso, M. E., Cruz-lemus, J. A., Genero, M., & Piattini, M. (2008). Uso de Meta-Análisis
para Integrar Resultados Experimentales Técnicas Estadísticas para Sintetizar
Experimentos. In Actas de los Talleres de las Jornadas de Ingeniería del Software y
Bases de Datos (Vol. 2, pp. 37–47).
Mansourpoor, M., & Shariati, A. (2012). Optimization of Biodiesel Production from
Sunflower Oil Using Response Surface Methodology. Journal of Chemical
Engineering & Process Technology, 03(05), 3–7. doi:10.4172/2157-7048.1000141
Marchetti, J. M. (2012). A summary of the available technologies for biodiesel production
based on a comparison of different feedstock’s properties. Process Safety and
Environmental Protection, 90(3), 157–163. doi:10.1016/j.psep.2011.06.010
Martínez B., R., & Martínez R., N. (1997). Diseño De Experimentos. (F. N. Universitario,
Ed.) (Primera., p. 479).
Math, M. C., Kumar, S. P., & Chetty, S. V. (2010). Technologies for biodiesel production
from used cooking oil — A review. Energy for Sustainable Development, 14(4), 339–
345. doi:10.1016/j.esd.2010.08.001
Mathiyazhagan, M., & Ganapathi, A. (2011). Factors Affecting Biodiesel Production.
Research in Plant Biology, 1(2), 1–5.
Matloff, N. (2009). The Art of R Programming.
Meher, L. C., Dharmagadda, V. S. S., & Naik, S. N. (2006). Optimization of alkalicatalyzed transesterification of Pongamia pinnata oil for production of biodiesel.
Bioresource technology, 97(12), 1392–1397. doi:10.1016/j.biortech.2005.07.003
Meher, L., Vidyasagar, D., & Naik, S. (2006). Technical aspects of biodiesel production by
transesterification—a review. Renewable and Sustainable Energy Reviews, 10(3),
248–268. doi:10.1016/j.rser.2004.09.002
Meng, X., Chen, G., & Wang, Y. (2008). Biodiesel production from waste cooking oil via
alkali catalyst and its engine test. Fuel Processing Technology, 89(9), 851–857.
doi:10.1016/j.fuproc.2008.02.006
Moriasi, D. N., Arnold, J. G., Liew, M. W. Van, Bingner, R. L., Harmel, R. D., & Veith, T.
L. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in
Watershed Simulations. American Society of Agricultural and Biological Engineers,
50(3), 885–900.
Nurfitri, I., Maniam, G. P., Hindryawati, N., Yusoff, M. M., & Ganesan, S. (2013).
Potential of feedstock and catalysts from waste in biodiesel preparation: A review.
Energy Conversion and Management, 74, 395–402.
doi:10.1016/j.enconman.2013.04.042
Oliveira Santos, O., Maruyama, S. A., Claus, T., de Souza, N. E., Matsushita, M., &
Visentainer, J. V. (2013). A novel response surface methodology optimization of basecatalyzed soybean oil methanolysis. Fuel, 113, 580–585.
doi:10.1016/j.fuel.2013.06.011
Orozco, A. M. (2009). Instrumentos para modernizar la comercialización en la cadena de
valor del aceite de palma. In Congreso Nacional de Cultivadores d Palma de Aceite -
Revista Palmas (Vol. 30, pp. 115–127).
Parida, S., Misra, S., & Sahu, D. K. (2011). Development of Process Technology to
Produce Low Cost Biofuel I - Minimization of Operating Parameters during
Preparation of Biodiesel. In World Renewable Energy Congress - Sweden (p. 7).
Patil, P. D., & Deng, S. (2009). Optimization of biodiesel production from edible and nonedible vegetable oils. Fuel, 88(7), 1302–1306. doi:10.1016/j.fuel.2009.01.016
Phan, A. N., & Phan, T. M. (2008). Biodiesel production from waste cooking oils. Fuel,
87(17-18), 3490–3496. doi:10.1016/j.fuel.2008.07.008
Piña, M. C. M. R., Rodríguez, M. A., & Benavides, E. M. (2006). Metodología robusta para
superficies de respuestas. Cultura Científica y Tecnológica, (12), 32–45.
Predojevic, Z., & Skrbic, B. (2009). Alkali-catalyzed production of biodiesel from waste
frying oils. Journal of the Serbian Chemical Society, 74(8-9), 993–1007.
doi:10.2298/JSC0909993P
Ramachandran, K., Suganya, T., Nagendra Gandhi, N., & Renganathan, S. (2013). Recent
developments for biodiesel production by ultrasonic assist transesterification using
different heterogeneous catalyst: A review. Renewable and Sustainable Energy
Reviews, 22, 410–418. doi:10.1016/j.rser.2013.01.057
Ramos, T. R. P., Gomes, M. I., & Barbosa-Póvoa, A. P. (2013). Planning waste cooking oil
collection systems. Waste management (New York, N.Y.), 33(8), 1691–703.
doi:10.1016/j.wasman.2013.04.005
Rashid, U, & Anwar, F. (2008). Production of biodiesel through optimized alkalinecatalyzed transesterification of rapeseed oil. Fuel, 87(3), 265–273.
doi:10.1016/j.fuel.2007.05.003
Rashid, Umer, Anwar, F., & Arif, M. (2009). Optimization of Base Catalytic Methanolysis
of Sunflower ( Helianthus annuus ) Seed Oil for Biodiesel Production by Using
Response Surface Methodology. Industrial & Engineering Chemistry Research, 48(4),
1719–1726. doi:10.1021/ie801136h
Razali, N., Mootabadi, H., Salamantina, B., Lee, K. T., & Abdullah, A. . (2010).
Optimization of Process Parameters for Alkaline-Catalysed Transesterification of
Palm Oil Using Response Surface Methodology. Sains Malaysiana, 39(5), 805–809.
Refaat, A. A., Attia, N. K., Sibak, H. A., Sheltawy, S. T. El, & Eldiwani, G. I. (2008).
Production optimization and quality assessment of biodiesel from waste vegetable oil,
5(1), 75–82.
Ritter, A., & Muñoz-carpena, R. (2013). Performance evaluation of hydrological models :
Statistical significance for reducing subjectivity in goodness-of-fit assessments.
Journal of Hydrology, 480, 33–45. doi:10.1016/j.jhydrol.2012.12.004
Santos, F. F. P., Rodrigues, S., & Fernandes, F. a. N. (2009). Optimization of the
production of biodiesel from soybean oil by ultrasound assisted methanolysis. Fuel
Processing Technology, 90(2), 312–316. doi:10.1016/j.fuproc.2008.09.010
Savaliya, M. L., Patel, J. R., & Dholakiya, B. Z. (2013). International Journal of Chemical
Studies A Concise Review on Acid , Alkali and Enzyme Catalyzed Transesterification
of Fatty Acid Esters of Glycerol ( FAEG ) to Fatty Acid Methyl Ester ( FAME ) Fuel,
1(3), 5–19
Shahid, E. M., & Jamal, Y. (2011). Production of biodiesel: A technical review. Renewable
and Sustainable Energy Reviews, 15(9), 4732–4745. doi:10.1016/j.rser.2011.07.079
Singh, A., He, B., Thompson, J., & Van Gerpen, J. (2006). Process Optimization of
Biodiesel Production using Alkaline Catalyst. Applied Engineering in Agriculture,
22(4), 597–600.
Sivasamy, A., Cheah, K. Y., Fornasiero, P., Kemausuor, F., Zinoviev, S., & Miertus, S.
(2009). Catalytic applications in the production of biodiesel from vegetable oils.
ChemSusChem, 2(4), 278–300. doi:10.1002/cssc.200800253
Thamsiriroj, T., & Murphy, J. D. (2010). How much of the target for biofuels can be met
by biodiesel generated from residues in Ireland? Fuel, 89(11), 3579–3589.
doi:10.1016/j.fuel.2010.06.009
Thirumarimurugan, M., Sivakumar, V. M., Xavier, a. M., Prabhakaran, D., & Kannadasan,
T. (2012). Preparation of Biodiesel from Sunflower Oil by Transesterification.
International Journal of Bioscience, Biochemistry and Bioinformatics, 2(6), 441–444.
doi:10.7763/IJBBB.2012.V2.151
Tomasevic, a. V., & Siler-Marinkovic, S. S. (2003). Methanolysis of used frying oil. Fuel
Processing Technology, 81(1), 1–6. doi:10.1016/S0378-3820(02)00096-6
Uzun, B. B., Kılıç, M., Özbay, N., Pütün, A. E., & Pütün, E. (2012). Biodiesel production
from waste frying oils: Optimization of reaction parameters and determination of fuel
properties. Energy, 44(1), 347–351. doi:10.1016/j.energy.2012.06.024
Vicente, G., Martínez, M., & Aracil, J. (2004). Integrated biodiesel production: a
comparison of different homogeneous catalysts systems. Bioresource technology,
92(3), 297–305. doi:10.1016/j.biortech.2003.08.014
Vicente, G., Martínez, M., & Aracil, J. (2007a). Optimisation of integrated biodiesel
production. Part I. A study of the biodiesel purity and yield. Bioresource technology,
98(9), 1724–33. doi:10.1016/j.biortech.2006.07.024
Vicente, G., Martínez, M., & Aracil, J. (2007b). Optimisation of integrated biodiesel
production. Part II: a study of the material balance. Bioresource technology, 98(9),
1754–61. doi:10.1016/j.biortech.2006.07.023
Waseem, Muhammad, Adnan, A., Anwar, F., Mukhtar, H., Raza, M. A., Ahmad, F., &
Rashid, U. (2012). Response Surface Methodology: An Emphatic Tool for Optimized
Biodiesel Production Using Rice Bran and Sunflower Oils. Energies, 5(12), 3307–
3328. doi:10.3390/en5093307
Waseem, Muhammad, Adnan, A., Mahmood, Z., Mukhtar, H., Danish, M., & Ahmad, Z.
(2012). Biodiesel production using Eruca Sativa Oil: Optimization and
Characterization. Pakistan journal of botany, 44(3), 1111–1120.
Yuan, X., Liu, J., Zeng, G., Shi, J., Tong, J., & Huang, G. (2008). Optimization of
conversion of waste rapeseed oil with high FFA to biodiesel using response surface
methodology. Renewable Energy, 33(7), 1678–1684.
doi:10.1016/j.renene.2007.09.007
Yusuf, N. N. a. N., Kamarudin, S. K., & Yaakub, Z. (2011). Overview on the current trends
in biodiesel production. Energy Conversion and Management, 52(7), 2741–2751.
doi:10.1016/j.enconman.2010.12.004
Yusup, S., & Khan, M. A. (2010). Base catalyzed transesterification of acid treated
vegetable oil blend for biodiesel production. Biomass and Bioenergy, 34(10), 1500–
1504. doi:10.1016/j.biombioe.2010.04.027
Zhang, Y., Dubé, M. ., McLean, D. ., & Kates, M. (2003). Biodiesel production from waste
cooking oil: 2. Economic assessment and sensitivity analysis. Bioresource
Technology, 90(3), 229–240. doi:10.1016/S0960-8524(03)00150-0
259373
TE06504
Autor
Ruiz Pardo, Ruth Yolanda
González Rodríguez, Leonardo José
Institución
Resumen
Utilizando la metodología del Meta-análisis, se realizó el análisis y la combinación de resultados de estudios independientes con el fin de obtener modelos que establecen la relación entre parámetros de proceso y rendimiento de Biodiesel a partir de aceites de cocina usados, utilizando un catalizador básico (KOH o NaOH) y metanol. El rendimiento máximo (95,1 %) obtenido con el modelo, con catalizador hidróxido de Potasio, corresponde a la Concentración de Catalizador (%peso): 0,88; Relación Molar alcohol–aceite: 7,6 y Temperatura de reacción (º C): 50,6. El rendimiento máximo (89,7 %) con catalizador hidróxido de Sodio corresponde a la Concentración de Catalizador (%peso): 1,14; Relación Molar alcohol–aceite: 8:1; Temperatura de reacción (º C): 61,9; Tiempo de Reacción (minutos): 52,5. En ambos casos la ecuación cuadrática es la que mejor se ajusta y los coeficientes de las variables que tienen mayor significancia en el modelo son los términos cuadráticos de la Concentración y la Relación Molar Alcohol-Aceite. También se encontró que es necesario profundizar en el efecto de la composición y la concentración de los ácidos grasos (saturados e insaturados) de la materia prima, para explicar las diferencias entre estudios, que han sido realizados en condiciones similares pero que reportan resultados diferentes.