masterThesis
Efecto de la bacteria ácido láctica b2® como biopreservante, sobre los patógenos de interés, la microbiota natural y las propiedades fisicoquímicas en un producto cárnico terminado
Fecha
2013Registro en:
Alba. M., Bravo. D., Medina. M. 2013. Inactivation of Escherichia coli O157:H7 in drycured ham by high-pressure treatments combined with biopreservatives. Food Control 31. 508 - 513
Alves. V.F, Martínez. R.C.R, Lavrador. M.A.S, De Martinis E.C.P. 2006. Antilisterial activity of lactic acid bacteria inoculated on cooked ham. Meat Science 74. 623-627.
Amezquita, A., Brashears, M.M., 2002. Competitive inhibition of Listeria monocytogenes in ready-to-eat meat products by lactic acid bacteria. Journal of Food Protection 65 (2), 316– 325.
Amos, N. D., Willix, J., Chadertton, T., North, M.F. 2008. A compilation of correlation parameters for predicting the enthalpy and thermal conductivity of solid foods within the temperature range of -40 °C to 40 °C. International Journal of Refrigeration 31. 1293 – 1298.
Ananou. S., Baños. A., Maqueda. M., Martínez-Bueno. M., Gálvez. A., Valdivia. E. 2010. Effect of combined physico-chemical treatments based on enterocin AS-48 on the control of Listeria monocytogenes and Staphylococcus aureus in a model cooked ham. Food Control 21. 478–486.
Andersen, L. 1995. Biopreservation with FloraCarn L-2. Fleisch- wirtschaft, 75, 705– 706, 711–712.
Andersen, L. 1997. Bioprotective culture for fresh sausage. Fleisch- wirtschaft, 77, 635–637.
Antwi. M, Bernaerts. K, Van Impe. J.F, Geeraerd. A.H. 2007. Modelling the combined effects of structured food model system and lactic acid on Listeria innocua and Lactococcus lactis growth in mono and co-culture. International Journal of Food Microbiology 120. 71-84.
Antwi. M, Theys. T.E, Bernaerts. K, Van Impe. J.F, Geeraerd. A.H. 2008. Validation of a model for growth of Lactococcus lactis and Listeria innocua in a structured gel system: Effect of monopotassium phosphate. International Journal of Food Microbiology 128. 320-329.
Association of Official Analytical Chemists (AOAC). 1990. Official Methods of Analysis. 15th Edition. Pp 1298.
Baranyi, J. & Roberts, T.A. 1994. A dynamic approach to predict bacterial growth in food. International Journal of Food Microbiology, 23, 277-294.
Badui, S. 1981. Química de los alimentos. Universidad Nacional Autónoma de México. Ed. Alhambra Mexicana S.A. México. pp 430.
Bredholt. S, Nesbakken. T, Holck. A. 1999. Protective cultures inhibit growth of Listeria monocytogenes and Escherichia coli O157:H7 in cooked, sliced, vacuum and gas packaged meat. International Journal of Food Microbiology 53. 43 -52.
Bredholt. S, Nesbakken. T, Holck. A. 2001. Industrial application of an antilisterial strain of Lactobacillus sakei as a protective culture and its effect on the sensory acceptability of cooked, sliced, vacuum-packaged meats. International Journal of Food Microbiology 66. 191-196.
Bjorkroth, J., Korkeala, H. 1997. Ropy slime-producing Lactobacillus sake strains possess a strong competitive ability against a commercial biopreservatives. International Journal of Food Microbiology. 38. 117 – 123.
Carr, F.J., Chill, D. y Maida, N. 2002. The lactic acid bacteria: a literature survey. Critical Reviews in Microbiology, 28(4), 281-370.
Castro. M.P, Palavecino. N.Z., C. Herman, Garro. O.A, Campos. C.A. 2011. Lactic acid bacteria isolated from artisanal dry sausages: Characterization of antibacterial compounds and study of the factors affecting bacteriocin production. Meet Science, 87, 321-329.
Chaves-López. C, Paparella. A, Tofalo. R, Suzzi. G. 2011. Proteolytic activity of Saccharomyces cerevisiae strains associated with Italian dry-fermented sausages in a model system. International Journal of Food Microbiology 150. 50-58.
Cizeikiene. D, Juodeikiene. G, Paskevicius. A, Bartkiene. E. 2013. Antimicrobial activity of lactic acid bacteria against pathogenic and spoilage microorganism isolated from food and their control in wheat bread. Food Control 31. 539 – 545.
FDA. 2012. Bad Bug Book - Foodborne Pathogenic Microorganisms and Natural Toxins
Girard, J. P. 1991. Tecnología de la carne y de los productos cárnicos. Ed. Acribia S.A. Zaragoza – España. pp 300.
González, B., Díez, V. 2002. The effect of nitrite and starter culture on microbiological quality of “chorizo”—a Spanish dry cured sausage. Meat Science. 60. 295 – 298.
González, M., Suarez, H., Martínez, O. 2009. Análisis estructural de la carne de jamón durante el proceso de cocción y temperatura de almacenamiento. Revista MVZ Córdoba. 14 (3). 1803 – 1811.
González, M., Suarez, H., Martínez, O. 2010. Influencia del Proceso de Cocción y Temperatura de Almacenamiento Sobre las Características Fisicoquímicas, Microbiológicas y Sensoriales del Jamón de Cerdo. Revista Colombiana Ciencias Pecuarias. 23 (3) pp. 336-348.
Holzapfel. W.H, Geisen. R, Schillinger. U. 1995. Biological preservation of foods with reference to protective cultures, bacteriocinas and food-grade enzymes. International Journal of Food Microbiology 24. 343 – 362
Honikel, K. 2008. The use and control of nitrate and nitrite for the processing of meat products. Meat Science. 78. 68 – 76.
Horita. C.N, Morgano. M.A, Celeghini. R.M.S, Pollonio. M.A.R. 2011. Physicochemical and sensory properties of reduced-fat mortadella prepared with blends of calcium, magnesium and potassium chloride as partial substitutes for sodium chloride. Meat Science 89. 426-423.
Hu. P, Xu. X.L, Zhou. G.H, Han. Y.Q, Xu. B.C, Liu. J.C. 2008. Study of the Lactobacillus sakei protective effect towards spoilage bacteria in vacuum packed cooked ham analyzed by PCR–DGGE. Meat Science 80, 462-469.
Hwang, A., Huang, L. 2010. Ready-to-eat foods: microbial concerns and control measures. CRC Press. Estados Unidos. Pp. 259.
ICONTEC – NTC 1325, 2008. Industrias Alimentarias. Productos Cárnicos Procesados No Enlatados. Pp 38.
Jofré, A., Garriga, M., Aymerich, T. 2008. Inhibition of Samonella sp, Listeria
monocytogenes and Staphylococcus aureus in cooked ham by combining
antimicrobials, high hydrostatic pressure and refrigeration. Meat Science 78, 53 – 59.
Juven, B. J., Barefoot, S. F., Pierson, M. D., McCaskill, L. H., Smith, B. 1998. Growth
and survival of Listeria monocytogenes in vacuum-packaged ground beef inoculated
with Lactobacillus alimentarius FloraCarn L-2. Journal of Food Protection, 61, 551–
556
Liu, G. Wang, Y. Gui, M. Zheng, H. Dai, R. Li, P. 2012. Combined effect of high
hydrostatic pressure and enterocin LM – 2 on the refrigerated shelf life of ready to
eat sliced vacuum packed cooked ham. Food Control, 24, 64 – 71.
Maldonado, S., Singh, J. 2008. Efecto de gelificantes en la formulación de dulce de
yacón. Ciência e Tecnologia de Alimentos - Campinas, 28(2). 429 – 434.
Marco, A., Navarro, J., Flores, M. 2006. The influence of nitrite and nitrate on
microbial, chemical and sensory parameters of slow dry fermented sausage. Meat
Science. 73. 660 – 673
Martín-Sánchez. A.M, Chaves-López. C, Sendra. E, Sayas. E, Fernández-López. J,
Pérez-Álvarez. J.A. 2011. Lipolysis, proteolysis and sensory characteristics of a
Spanish fermented dry-cured meat product (salchichón) with oregano essential oil
used as surface mold inhibitor. Meat Science 89. 35-44.
Mellefont, L., McMeekin, T., Ross, T. 2008. Effect of relative inoculum concentration
on Listeria monocytogenes growth in co-culture. International Journal of Food
Microbiology, 121, 157 – 168
Mora Soler, L. 2010. Determinación de compuestos bioquímicos para el control de
calidad en la elaboración de jamón cocido y jamón curado. Tesis Doctoral.
Universidad Politécnica de Valencia. España. pp. 282
Muntal, B. 2007. Mejora de la seguridad alimentaria en productos cárnicos listos
para el consumo mediante la aplicación combinada de tecnologías emergentes.
Tesis Doctoral. Universitat de Girona. Cataluña. Pp 145.
Myers, K., Cannon, J., Montoya, D., Dickson, J., Lonergan, S., Sebranek, J. 2013.
Effects of high hydrostatic pressure and varying concentrations of sodium nitrite from
traditional and vegetable-based sources on the growth of Listeria monocytogenes on
ready-to-eat (RTE) sliced ham. Meat Science, 94, 69-76
Office of Food Additive (HFS-200). 2004. Certification of Carnobacterium strains as
GRAS. Burdock Group Consultants.
O’Keeffe, T., & Hill, C. 1999. Bacteriocins. In R. K. Robinson, C. A. Batt, & P. D.
Patel (Eds.), Encyclopedia of food microbiology (pp. 183–191)
Ossa, J., Coral, A., Vanegas, M. 2010. Microbiota de jamones de cerdo cocidos
asociada al deterioro por abombamiento del empaque. Revista MVZ Córdoba, 15
(2), 2078 – 2086.
Ray Bibek. 2003. Fundamental Food Microbiology. CRC. Press. Library of Congress
Cataloging-in-Publication Data.
Rodríguez, J. M., Martínez, M. I., Horn, N., Dodd, H. M. 2002. Heterologous
production of bacteriocins by lactic acid bacteria. International Journal of Food
Microbiology, 80, 101–116.
Sanz, Y., Vila, R., Toldra, F., Nieto, P., Flores, J. 1997. Effect of nitrate and nitrite
curing salts on microbial changes and sensory quality of rapid ripened sausages.
International Journal of Food Microbiology. 37. 225 – 229.
Salim – Ammor, M., Mayo, B. 2007. Selection criteria for lactic acid bacteria to be
used as functional starter cultures in dry sausage production: An update. Meat
Science. 76, 138 – 146
Samelis, J., Kakouri, A., Rementzis, J., 2000. Selective effect of the product type and
the packaging conditions on the species of lactic acid bacteria dominating the
spoilage microbial association of cooked meats at 4 °C. Food Microbiology 17, 329–
340.
Slongo, A., Rosenthal, A., Quaresma, L., Deliza, R., Mathias, S., Falcão de Aragão,
G. 2009. Modeling the growth of lactic acid bacteria in sliced ham processed by high
hydrostatic pressure. LWT - Food Science and Technology. 42. 303 – 306.
Spaziani, M., Del Torre, M., Stecchini, M. 2009. Changes of physicochemical,
microbiological, and textural properties during ripening of Italian low-acid sausages.
Proteolysis, sensory and volatile profiles. Meat Science. 81. 77 – 85
Sobrino. O.J. 1993. Caracterización parcial, bioquímica e inmunológica, de una
sustancia antimicrobiana producida por Lactobacillus sake 148. Tesis Doctoral.
Universidad Complutense de Madrid. España. Pp 293
Steele, R. 2004. Understanding and measuring the shelf-life of food. Wood head
Publishing Limited. Cambridge. Pp 407.
Tecnova. 2013. Informe de Análisis de Inteligencia Competitiva en Proyectos
Universidad – Empresa cofinanciados por Colciencias – Proyecto Elaboración de
Embutidos Cárnicos 221-2010. Colombia. Pp 80.
Uyttendaele, M., De Troy, P., Debevere, J., 1999. Incidence of Listeria
monocytogenes in different types of meat products on the Belgian retail market.
International Journal of Food Microbiology 53 (1), 75–80.
Vásquez. S, Suárez. H, Zapata. S. 2009. Utilización de Sustancias antimicrobianas
producidas por bacterias ácido lácticas en la conservación de la carne. Revista
Chilena de Nutrición. 36 (1)
Vereecken. K.M., Devlieghere. F., Bockstaele. A, Debevere. J, Van Impea. J.F.
2003. A model for lactic acid-induced inhibition of Yersinia enterocolitica in monoand co-culture with Lactobacillus sakei. Food Microbiology 20. 701 – 713.
Vermeiren, L. Devlieghere, F. Debevere. J. 2004. Evaluation of meat born lactic acid
bacteria as protective cultures for the biopreservation of cooked meat products.
International Journal of Food Microbiology 96, 149 – 164.
Vermeiren. L. 2006. Biopreservation of anaerobically packaged sliced cooked meat
products by non-bacteriocinogenic micro-organisms. Universiteit Gent. Pp. 306.
Vercammen, A., Kristof, G.A., Lurquin, I., Steen, L., Geomaere, O., Szczepaniak, S.,
Paelinck, H., Hendrickx, M. and Michiels, C. 2011. Shelf – life extension of cooked
ham model product by high hydrostatic pressure and natural preservatives.
Innovative Food science and Emerging Technologies. 12. 407 – 415.
259245
TE06392
Autor
Sotelo Díaz, Luz Indira
Cueto Vigil, María Clementina
Institución
Resumen
Para la industria de productos cárnicos cocidos, específicamente en productos listos para el consumo como salchichas, mortadela y jamón, el crecimiento de microorganismos patógenos como Listeria monocytogenes, Salmonella enteritidis, Escherichia coli y Staphylococcus aureus debe estar en continuo control, ya que podrían encontrarse como resultado de la contaminación cruzada en las operaciones de corte y empaque que se llevan a cabo después del proceso de cocción, el cual tiene como objetivos: coagulación de las proteínas, inactivación de enzimas, desarrollo de las características organolépticas deseadas y reducción del número de microorganismos. Así, la biopreservación es un método que busca disminuir la carga microbiana no deseada de un producto, después del proceso de cocción, por medio del uso de microorganismos con capacidad antimicrobiana. El empleo de estas cepas biopreservantes comerciales a nivel industrial requiere de procesos de validación en las diferentes matrices alimentarias sobre las cuales se quieran aplicar.