masterThesis
Estudio del problema de ruteo de vehículos con balance de carga :Aplicación de la meta-heurística Búsqueda Tabú.
Fecha
2014-03-11Registro en:
Abdelgawad, H., Adbulhai, B., & Wahba, M. (2010). Multiobjective optimization for multimodal
evacuation. Transportation Research Record (2196), 21-33.
Acero Barraza, R. D. & Torres, F., 2002. Aplicación de una heurística de búsqueda tabú en un
problema de programación de tareas en línea flexible de manufactura, Tesis de Maestría.
Universidad de los Andes.
Alabas-Ulsu, C. (2008). A self-tuning heuristics for a multi-objective vehicle routing problem.
Journal of the Operational Research Society, 59(7), 988-996.
Anbuudayasankar, S., Ganesh, Koh, L. & Ducq, Y., 2012. Modified savings heuristics and genetic
algorithm for bi-objective vehicle routing problem with forced backhauls. Expert Systems
with Applications, Issue 39, p. 2296–2305
Arakawa, M., & Bou, T. (2009). Development of a hybrid genetic algorithm for multi-objective
problem for a vehicle routing problem. 3rd International Conference on Management
Science and Engineering Management, (págs. 10-15). Bangkok.
Augerat, P., Belenguer, J., Benavent, E. & Corber, A., 1998. Computational Results with a Branch
and Cut Code for the Capacitated Vehicle Routing Problem. Research Report 949-M,
Universite Joseph Fourier, Grenoble, France.
Baños, R., Ortega, J., Gil, C. & Márquez, A., 2013. A hybrid meta-heuristic for multi-objective
vehicle routing problems. Computers & Industrial Engineering, 65(Issue 2), p. 286–296.
Barán, B., & Schaerer, M. (2003). A multiobjective ant colony system for vvehicle routing problem
with time windows. IASTED Internatinal Multi-Conference on Applied Informatics, 21,
págs. 97-102
Beham, A. (2007). Parallel Tabu Search and the multiobjective vehicle routing problem with timw
windows. 21st International Parallel and Distributed Processing Symposium, IPDPS 2007
Benjamin, A. & Beasley, J., 2010. Metaheuristics for the waste collection vehicle routing problem
with time windows, driver rest period and multiple disposal facilities. Computers &
Operations Research, Issue 37, p. 2270–2280.
Borgulya, I. (Diciembre de 2008). An algorithm for the capacitated vehicle routing problem with
route balancing. Central European Journal of Operations Research, 16(4), 331-343.
Braekers, K., Caris, A., & Janssens, G. (2011). A Deterministic Annealing Algorithm for a BiObjective
Full Truckload Vehicle Routing Problem in Drayage Operations. Procedia -
Social and Behavioral Sciences, 20, 344-353.
Castro, J., Landa-Silva, D., & Moreno Pérez, J. (2009). Exploring feasible and infeasible regions in
the vehicle routing problem with time windows using a multi-objective particle swarm
optimization approach. Studies in Computational Intelligence, 236, 103-114.
Castro-Gutierrez, J., Landa-Silva, D., & Moreno Pérez, J. (2011). Nature of real-world multiobjective
vehicle routing with evolutionary algorithms. Conference Proceedings - IEEE
International Conference on Systems, Man and Cybernetics 2011, (págs. 257-264).
Chand, P., & Mohanty, J. (2011). Multi objective genetic approach for solving vehicle routing
problem with time window. Communications in Computer and Information Science: 1st
International Conference on Computer Science, Engineering and Information Technology,
CCSEIT 2011, 204, págs. 336-343.
Chang, T.-S., & Wang, S.-D. (2010). Multi-trip vehicle routing and scheduling problems. 40th
International Conference on Computers and Industrial Engineering, CIE40 2010. Awaji
Cheong, C., Tan, K., Liu, D., & Xu, J. (2006). A multiobjective evolutionary algorithm for solving
vehicle routing problem with stochastic demand. IEEE Congress on Evolutionary
Computation.
Clarke, G. & Wright, W., 1964. Scheduling of vehicles from a central depot to a number of delivery
points.. Operations Research 12, pp. 568-581.
Cruz Chavez, M. A. & Díaz Parra, O., 2000. El problema de transporte. Centro de Investigación en
Ingeniería y Ciencias Aplicadas.
Dantzig, G. B. & Ramser, R., 1959. The Truck Dispatching Problem.. Management Science 6, pp. 80
- 91.
Díaz Fernandez, A., González Laverde, J. L., Laguna, M. & Moscato, P., 1996. Optimización
Heurística y Redes Nueronales. Primera ed. España: Paraninfo S.A..
Dharmapriya, Siyambalapitiya, & Kulatunga. (2010). Artificial Intelligence Computational
Techniques to Optimize a Multi Objective Oriented Distribution Operations. Bangladesh:
Proceedings of the 2010 International Conference on Industrial Engineering and Operations
Management, Dhaka.
Donati, A., Montemanni, R., Casagrande, N., Rizzoli, A., & Gambardella, L. (16 de Marzo de 2008).
Time dependent vehicle routing problem with a multi ant colony system. European Journal
of Operational Research, 185(3), 1174-1191
Edgeworth., F. Y., 1881.. Mathematical physics. P. Keagan, London, England,.
Fisher, M. & Jaikumar, R., 1981. A generalized assignment heuristic for vehicle routing. Networks,
11(2), pp. 109 - 124.
Gao, J. (2010). Model and algorithm of vehicle routing problem with time windows in stochastic
traffic network. 2010 International Conference on Logistics Systems and Intelligent
Management, ICLSIM 2010, 2, págs. 848-851.
Gao, A. (2012). The vehicle routing problem with backhauls: A multi-objective evolutionary
approach. Lecture Notes in Computer Science: 12th European Conference on Evolutionary
Computation in Combinatorial Optimization, EvoCOP 2012, 7245 LNCS, págs. 255-266.
Málaga.
García-Najera, A., & Bullinaria, J. A. (2009). Comparison of similaity measures for the multiobjective
vehicle routing problem with time windows. Proceedings of the 11th Annual
genetic and Evolutionary Computation Conference, GECCO 2009, (págs. 579-586).
García-Najera, A., & Bullinaria, J. A. (2010 a). Optimizing delivery time in multi-objective vehicle
routing problems with time windows. 11th International Conference on Parallel Problem
Solving from Nature, PPSN 2010, 6239 LNCS, págs. 51-60.
García-Najera, A., & Bullinaria, J. (2010 b). An improved multi-objective evolutionary algorithm for
the vehicle routing problem with time windows. Computers and Operations Research, 38(1),
287-300.
Garcia-Najera, A., & Bullinaria, J. A. (2010 c). Bi-objective optimization for the Vehicle Routing
Problem with Time Windows: Using route similarity to enhance performance. LNCS - 5th
International Conference on Evolutionary Multi-Criterion Optimization, EMO 2009, 5467
LNCS, págs. 275-289. Nantes
Garey, M. R. & Johnson, D., 1979. Computers and intractability, A Guide to the theory of NPCompleteness. New York. USA. W.H.Freeman and Company.
Geiger. (2007). Interactive utility maximization in multi-objective vehicle routing problems: A
"decision maker in the loop"-approach. IEEE Symposium of Computational Intelligence in
Multicriteria Decision Making, MCDM 2007. Honolulu.
Geiger, M. (2010). Fast Approximation Heuristics for Multi-Objective Vehicle Routing Problems.
Applications of Evolutionary Computation. EvoApplications 2010: EvoCOMNET,
EvoENVIRONMENT, EvoFIN, EvoMUSART, and EvoTRANSLOG, (págs. 441-450).
Istanbul.
Geiger, M. J., & Wenger, W. (2007). On the interactive resolution of multi-objective vehicle routing
problems. Notes in Computer Science: 4th International Conference on Evolutionary MultiCriterion Optimization, EMO 2007, 4403 LNCS, págs. 687-699.
Ghoseiri, K., & Ghannadpour, S. (2010). Multi-objective vehicle routing problem with time
windows using goal programming and genetic algorithm. Applied Soft Computing, 10, 1096-
1107.
Glover, F., 1986. Tabu Search-Part I. ORSA Journal on Computing, Volumen 1, pp. 190-206.
Gong, W., & Fu, Z. (2010). ABC-ACO for perishable food vehicle routing problem with time
windows. 2010 International Conference on Computational and Information Sciences,
ICCIS2010, (págs. 1261-1264). Chengdu
Gong, W., Liu, X., Zhang, J., & Fu, Z. (2007). Two-generation ant colony system for vehicle routing
problem with time windows. International Conference on Wireless Communications,
Networking and Mobile Computing, WiCOM 2007, (págs. 1917-1920).
Hao, T. & Mingwei, H., 2005. Dynamic vehicle routing problem with multiple objectives: Solution
framework and computational experiments. Transportation Research Record, Volumen
1923, pp. 199-207.
Hasanpour, H., Mosadeghkhah, M., & Tavakoli Moghadam, R. (Octubre de 2009). Solving a
Stochastic Multi-Depot Multi-Objective Vehicle Routing Problem by a Simulated
Annealing. Journal of Industrial Engineering (Journal of Faculty of Engineering), 1(43), 25-
36
Hillier, F. S. & Lieberman, G., 2006. Introducción a la investigación de operaciones. Novena ed.
México, McGraw-Hill.
Hokey, M. (1991). A multiobjective vehicle routing problem with soft time windows: the case of a
public library distribution system. Socio-Economic Planning Sciences, 25(3), 179-188.
Hu, M.-W., & Tang, H. (2010). Multi-objective optimization model of dynamic vehicle routing
problem. Shenzhen Daxue Xuebao (Ligong Ban)/ Journal of Shenzhen University Science
and Engineering, 27(2), 230-235.
Huayu, X., Wenhui, F., Tian, W., & Lijun, Y. (2008). An Or-opt NSGA-II algorithm for multiobjective vehicle routing problem with time windows. 4th IEEE Conference on Automation
Science and Engineering, CASE 2008. A.N. 4626505, (págs. 309-314). Washington
Jaber, J., Manel, Z. & Khaled, M., 2012. An NSGA-II algorithm for the green vehicle routing
problem. Notes in Computer Science: 12th European Conference on Evolutionary
Computation in Combinatorial Optimization, Volumen 7245, pp. 37-48.
Jia, Y., & Ren, Z. (2010). Hybrid genetic algorithm for multi-objective vehicle routing problem
based on human-computer interaction. 3rd International Conference on Information
Management, Innovation Management and Industrial Engineering, ICIII 2010, 1, págs. 393-
396. kunming
Jiang, L., & Ding, B. (2010). Disruption Management Model of Multi-Depot Vehicle Routing
Problem with Customers' Demand Changes. Systems Engineering(12)
Jie, X. & De-Xian, H., 2007. Hybrid particle swarm optimization for vehicle routing problem with
multiple objectives. Computer Integrated Manufacturing Systems, CIMS, 13(3), pp. 573-579.
Jozefowiez, N., Semet, F., & Talbi, E.-G. (2005). Enhancements of NSGA II and its application to
the vehicle routing problem with route balancing. Artificial Evolution. 7th International
Conference, Evolution Artificielle, EA 2005. Revised Selected Papers., (págs. 131-142).
Lille.
Jozefowiez, N., Semet, F., & Talbi, E.-G. (2007). Target aiming Pareto search and its application to
the vehicle routing problem with route balancing. Journal of Heuristics, 13(5), 455-469.
Jozefowiez, N., Semet, F., & Talbi, E.-G. (2008). Multi-Objective vehicle routing problems.
European Journal of Operational Research(189), 293-309.
Jozefowiez, N., Semet, F., & Talbi, E.-G. (2009). An evolutionary algorithm for the vehicle routing
problem with route balancing. European Journal of Operational Research, 195(3), 761-769.
Jun, Q., Wang, J., & Zheng, B.-j. (2008). A hybrid multiobjective algorithm for dynamic vehicle
routing problems. Computational Science - ICCS 2008. 8th International Conference, (págs.
674-681).
Kritikos, M. N., & Loannou, G. (Enero de 2010). The balanced cargo vehicle routing problem with
time windows. International Journal of Production Economics, 123(1), 42-51.
Kuo, Y. & Wang, C.-C., 2012. A variable neighborhood search for the multi-depot vehicle routing
problem with loading cost. Expert Systems with Applications, Issue 39
Lau, H., Chan, T., Tsuia, W., Chanb, F., Hoa, G., & Choya, K. (2009). A fuzzy guided multiobjective evolutionary algorithm model for solving transportation problem. Expert Systems
with Applications(36), 8255-8268
Lau, H., Chan, T., Tsui, W., & Pang, W. (2010). Application of Genetic Algorithms to Solve the
Multidepot Vehicle Routing Problem. IEEE Transactions on Automation Science and
Engineering, 2(7), 383-392
Lee, T.-R. & Ueng, J.-H., 1999. A study of vehicle routing problems with load-balancing.
International Journal of Physical Distribution & Logistics Management, Issue 29, pp. 646 -
657
Li, J. (2011). Study of a multi-objective vehicle routing problem with time window based on particle
swarm optimization. 3rd International Workshop on Intelligent Systems and Applications,
ISA 2011. Wuhan.
Li, J., & Zhang, Y. (2009). The Study on Vehicle Routing Problem of Simultaneous Deliveries and
Pickups with Time Windows. Information and Control, 38(6), 752-758.
Li, L., & Fu, Z. (Mayo de 2002). The school bus routing problem: A case study. Journal of the
Operational Research Society, 53(5), 552-558.
Li, Y. Y., & Liu, C. S. (2011). An effective Genetic Algorithm for the Vehicle Routing Problem with
Multiple Depots. Advanced Materials Research, 204-210
Lin, S. & Kernighan, B. W., 1973. An Effective Heuristic Algorithm for the Traveling-Salesman
Problem. Operations Research, Volumen 21, pp. 498-516.
Lin, & Kwok. (2005). Multi-objective metaheuristics for a location routing problem with multiple
use of vehicles on real data and simulated data. European Journal of Operational Research.
Lin, L., Shi-Xin, L. & Jia-Fu, T., 2011. Vehicle routing problem with time reservation under B2C
electronic commerce and ant colony algorithm for multi-objective optimization. Control
Theory and Applications, 28(1), pp. 87-93.
Li, X. & Tian, P., 2006. An ant colony system for the open vehicle routing problem.. En: M. D. e. al.,
ed. In ANTS 2006, Lecture Notes in Computer Sciences 4150.
Liu, Q., & Xu, J. (2008). A study on vehicle routing problem in the delivery of fresh agricultural
products under random fuzzy environment. International Journal of Information and
Management Sciences, 19(4), 673-690.
Lüer, A., Benavente, M., Bustos, J., Venegas, B., 2009. El problema de rutas de vehículos:
Extensiones y métodos de resolución, estado del arte. Workshop Internacional EIG2009.
Departamento de Ingeniería de Sistemas Universidad de La Frontera – Chile.
Mei, Y., Tang, K., & Yao, X. (2011). A memetic algorithm for periodic capacitated arc routing
problem. IEEE Transactions on Systems, Man, and Cybernetics, 41(6), 1654-1667.
Mendoza, J. (2011). Solving real-world vehicle routing problems in uncertain enviroments. 4OR: A
Quarterly Journal of Operations Research, 9(3), 321-324
Mester, D. & Bräysy, O., 2007. Active guided evolution strategies for large-scale capacitated vehicle
routing problems. Computers & Operations Research, pp. 2964-2975.
Miller, C., Tucker, A. & Zemlin, R., 1960. Integer Programming Formulations and traveling
salesman problems.. J. Assoc. Comput. Mach, Issue 7, pp. 326-329.
Mukai, N. (2008). Constraint relaxation for multi-objective optimization in vehicle routing problem.
11th IASTED International Conference on Intelligent Systems and Control, ISC 2008, (págs.
44-49). Orlando.
Müller, J. (Abril de 2010). Approximative solutions to the bicriterion Vehicle Routing Problem with
Time Windows. European Journal of Operational Research, 202(1), 223-231
Muñoz-Zavala, A., Hernández-Aguirre, A., & Villa-Diharce, E. (2009). Particle evolutionary swarm
multi-objective optimization for vehicle routing problem with time windows. Studies in
Computational Intelligence, 242, 233-257.
Nguyen, P. K., Crainic, T. G. & Toulouse, M., 2013. A tabu search for Time-dependent Multi-zone
Multi-trip Vehicle Routing Problem with Time Windows. European Journal of Operational
Research, Volumen 231, p. 43–56.
Olivera, A., Heurísticas para Problemas de Ruteo de Vehículos., Instituto de Computación, Facultad
de Ingeniería. Universidad de la República, Montevideo, Uruguay. 2004, Disponible
en:www.fing.edu.uy/inco/pedeciba/bibliote/reptec/TR0408.pdf
Ombuki, B., Ross, B., & Hanshar, F. (Febrero de 2006). Multi-objective genetic algorithms for
vehicle routing problem with time windows. Applied Intelligence, 24(1), 17-30.
Ombuki-Berman, B. M., Runka, A., & Hanshar, F. T. (2007). Waste collection vehicle routing
problem with time windows using multi-objective genetic algorithms. 3rd IASTED
International Conference on Computational Intelligence, CI 2007, (págs. 91-97). Banff.
Ombuki-Berman, B., & Hanshar, F. (2009). Using Genetic Algorithms for Multi-Depot Vehicle
Routing. Bio-Inspired Algorithms for the Vehicle Routing Problem. Studies in
Computational Intelligence, 161, 77-99.
Pacheco, J., & Martí, J. (2006). Tabu Search for a multi-objective routing problem. Journal of the
Operational Research Society, 57(1), 29-37.
Pareto, V., 1896. Cours d’economie politique, Genève, Droz, Novena edición por G.H. Bousquet et
G. Bucino (1964) misma editorial.
Park, Y., & Koelling, C. (Junio de 1986). A solution of vehicle routing problems in a multiple
objective environment. Engineering Costs and Production Economics, 10(2), 121-132.
Pei, Z., Liu, Z., & Zhao, Y. (Octubre de 2010). Using difference evolutionary algorithm to multiobjective routing optimization. Liaoning Gongcheng Jishu Daxue Xuebao (Ziran Kexue
Ban)/Journal of Liaoning Technical University (Natural Science Edition), 29(5), 899-902.
Qian, Z., Li-Qun, G., Xian-Pei, H. & Wei, W., 2003. Research on multi-objective vehicle routing
problem of optimization based on clustering analysis and improved genetic algorithm.
Control and Decision, 18(4), pp. 418-422.
Qiang, M., Der-Horng, L., & Ruey-Long, C. (2005). Multiobjective vehicle routing and scheduling
problem with time window constraints in hazardous material transportation. Journal of
Transportation Engineering, 131, 699-707.
Qinghua, Z., Yao, L., Guoquan, C., Zhuan, W., Haiqin, H., & Kui, L. (2008). Improved genetic
algorithm for variable fleet vehicle routing problem with soft time window. IEEE INDIN
2008: 6th IEEE International Conference on Industrial Informatics, (págs. 233-238).
Daejeon
Reiter, P., & Gutjahr, W. (Marzo de 2012). Exact hybrid algorithms for solving a bi-objective
vehicle routing problem. Central European Journal of Operations Research, 20(1), 19-43
Repoussis, P., Tarantilis, C., Bräysy, O., & Ioannou, G. (Marzo de 2010). A hybrid evolution
strategy for the open vehicle routing problem. Computers and Operations Research, 37(3),
443-455.
Riera-Ledesma, J. & Salazar-González, J. J., 2012. Solving school bus routing using the multiple
vehicle traveling purchaser problem: A branch - and - cut approach. Computers &
Operations Research, Issue 39, p. 391–404.
Scheffermann, R., Bender, M., & Cardeneo, A. (2009). Robust solutions for vehicle routing
problems via evolutionary multiobjective optimization. 2009 IEEE Congress on
Evolutionary Computation, CEC 2009, (págs. 1605-1612).
Shang, J. S., & Cuff, C. K. (Septiembre de 1996). Multicriteria pickup and delivery problem with
transfer opportunity. Computers & Industrial Engineering, 30(4), 631-645.
Sherinov, Z., Unveren, A., & Acan, A. (2011). An evolutionary multi-objective modeling and
solution approach for fuzzy vehicle routing problem. INISTA 2011 - 2011 International
Symposium on Innovations in Intelligent Systems and Applications, (págs. 450-454)
Shinya, W. & Kazutoshi, S., 2007. A multiobjectivization approach for vehicle routing problems.
Evolutionary Multi-Criterion Optimization. Lecture Notes in Computer Science, 4403(3), pp.
660-672.
Schulze, J. & Torsten, F., 1999. A parallel algorithm for the vehicle routing problem with time
window constraints. Annals of Operations Research, Volumen 86, pp. 585-607.
Subramanian, A., Drummonda, L. & Bentes, C., 2010. A parallel heuristic for the Vehicl eRouting
Problem with Simultaneous Pickup and Delivery. Computers & Operations Research, Issue
37, pp. 1899-1911.
Sulieman, D., Jourdan, L., & Talbi, E.-G. (2010). Using multiobjective metaheuristics to solve VRP
with uncertain demands. 2010 IEEE World Congress on Computational Intelligence, WCCI
2010 - 2010 IEEE Congress on Evolutionary Computation, CEC 2010. Barcelona.
Tadahiko, M. & Ryota, I., 2007. Local search in two-fold EMO algorithm to enhance solution
similarity for multi-objective vehicle routing problems. Lecture Notes in Computer Science:
4th International Conference on Evolutionary Multi-Criterion Optimization, Volumen 4403
LNCS, pp. 201-215
Tan, K., Lee, T., Chew, Y., & Lee, L. (2003 a). A hybrid multiobjective evolutonary algorithm for
solving truck and trailer vehicle routing problems. Congress on Evolutionary Computation
(IEEE Cat. No. 03TH8674), (págs. 2134-2141).
Tan, Lee, T., Chew, Y., & Lee, L. (2003 b). A multiobjective evolutionary algorithm for solving
vehicle routing problem with time windows. 2003 IEEE International Conference on
Systems, Man and Cybernetics. Conference Theme - System Securyty and Assurance, 1,
págs. 361-366.
Tan, Chew, & Lee. (2006 a). A hybrid multi-objective evolutionary algorithm for solving truck and
trailer vehicle routing problems. European Journal of Operational Research(172), 855-885.
Tan, K., Chew, Y., & Lee, L. (2006 b). A hybrid multiobjective evolutionary algorithm for solving
vehicle routing problem with time windows. Computational Optimization and Applications,
34(1), 115-151
Tan, K., Cheong, C., & Goh, C. (2007). Solving multiobjective vehicle routing problem with
stochastic demand via evolutionary computation. European Journal of Operational
Research, 177(2), 813-839.
Tang, H., & Hu, M. (2005). Dynamic vehicle routing problem with multiple objectives - Solution
framework and computational experiments. Transportation Research Record(1923), 199-
207
Tang, J., Pan, Z., Fung, R. Y., & Lau, H. (2009). Vehicle routing problem with fuzzy time windows.
Fuzzy Sets and Systems, 160(5), 683-695.
Tavakkoli-Moghaddam, Makui, & Mazloomi. (2010). A new integrated mathematical model for a
bi-objective multi-depot location-routing problem solved by a multi-objective scatter search
algorithm. Journal of Manufacturing Systems(29), 111-119.
Toth, P. & Vigo, D., 2002. The Vehicle Routing Problem. United States of America: Society for
Industrial and Applied Mathematics.
Tzong-Ru, L., & Ji-Hwua, U. (1999). A study of vehicle routing problems with load-balancing.
International Journal of Ohysical Distribution & Logistics Management, 29(10), 646-658.
Urquhart, N., Hart, E., & Scott, C. (2010). Building low CO2 solutions to the vehicle routing
problem with time windows using an evolutionary algorithm. IEEE Congress on
Evolutionary Computation. Barcelona.
Venkatasubbaiah, Acharyulu, & Mouli. (Abril de 2011). Fuzzy Goal Programming Method for
Solving Muli-Objective Transportation Problems. Global Journal of Researh in
Engineering, 11(3).
Vidal, T., Crainic, T. G., Gendreau, M. & Prins, C., 2013. A hybrid genetic algorithm with adaptive
diversity management for a large class of vehicle routing problems with time-windows.
Computers & Operations Research, Issue 40, p. 475–489
Wang, J., & Li, B. (2011). Multi-objective tabu search algorithm for vehicle routing problem with
fuzzy due-time. Computer Integrated Manufacturing Systems, CIMS, 17(4), 858-866
Watanabe, S., & Sakakibara, K. (2007). A multiobjectivization approach for vehicle routing
problems. Evolutionary Multi-Criterion Optimization - 4th International Conference, EMO
2007, Proceedings. Lecture Notes in Computer Science, 4403 LNCS, págs. 660-672.
Wei, T., Fan, W., & Xu, H. (Diciembre de 2008). Greedy non-dominated sorting in genetic
algorithm-ii for vehicle routing problem in distribution. Chinese Journal of Mechanical
Engineering (English Edition), 21(6), 18-24.
Weise, T., Podlich, A., & Gorldt, C. (2010). Solving Real-World Vehicle Routing Problems with
Evolutionary Algorithms. In: Natural Intelligence for Scheduling, Planning and Packing
Problems. Studies in Computational Intelligence, 250, 29-53.
Wen, M., Cordeau, J.-F., Laporte, G., & Larsen, J. (2010). The dynamic multi-period vehicle routing
problem. Computers and Operations Research, 37(9), 1615-1623.
Xiong-Wei, L., Da, Z., & Jun, L. (2009). Research of post logistic VRP with multi-objective based
on PACA. Application Research of Computers, 26(6), 2070-2078.
Xizhen, R., & Zhihong, L. (2008). A new effective evolutionary algorithm for the vehicle routing
problem. 8th International Conference of Chinese Logistics and Transportation and
Development in China, (págs. 2199-2205).
Xu, Y., Wang, L. & Yang, Y., 2012. A New Variable Neighborhood Search Algorithm for the Multi
Depot Heterogeneous Vehicle Routing Problem with Time Windows.. Electronic Notes in
Discrete Mathematics, Issue 39, p. 289–296.
Yanwei, Z., Chuan, L., Jing-ling, Z., Xingqiu, R., & Wei, R. (2011). Research on Vehicle Routing
Problem with Stochastic Demand Based on Multi-objective Method. Advanced Intelligent
Computing. 7th International Conference, IOC 2011, (págs. 153-161). Berlin
Yu, B. & Zhen, Z., 2011. An ant colony optimization model: The period vehicle routing.
Transportation Research Parte E, Volumen 47, p. 166–181.
Zhang, T., Chaovalitwongse, W. & Zhang, Y., 2012. Scatter search for the stochastic travel-time
vehicle routing problem with simultaneous pick-ups and deliveries. Computers &
Operations Research, Issue 39, p. 2277–2290.
Zhang, J.-Y., & Li, J. (2011). A heuristic algorithm to vehicle routing problem with the consideration
of customers' service preference. 8th International Conference on Service Systems and
Service Management - Proceedings of ICSSSM'11
Zheng, B. (2010). Multi-objective vehicle routing problem in hazardous material transportation.
ICLEM 2010: Logistics for Sustained Economic Development - Infraestructure, Information,
Integration-. Proceedings of the 2010 International Conference of Logistics Engineering and
Management. Chengdu.
Zhu, N., & Shao, C. (2010). Vehicle routing problem with simultaneous delivery and pick-up based
on the improved genetic algorithm. Proceedings - 4th International Conference on Genetic
and Evolutionary Computing, ICGEC 2010, (págs. 312-316).
Zou, S., Huang, X., & Zhang, H. (2009). Multi-objective genetic algorithm for solving capacitated
vehicle routing problems. Journal of Southwest Jiaotong University, 44(5), 782-786.
259084
TE06344
Autor
Quintero Araujo, Carlos Leonardo
Institución
Resumen
El Problema de Ruteo de Vehículos (VRP – por su sigla en inglés) es uno de los problemas de optimización combinatoria más estudiados en las últimas décadas. Este consiste en determinar un conjunto de rutas para una flota de vehículos que parte de uno o más depósitos para satisfacer la demanda de clientes dispersos geográficamente. El enfoque tradicionalmente utilizado ha sido la optimización de un solo objetivo; sin embargo, en la realidad organizacional optimizar más de un objetivo permite la toma de decisiones con una visión de negocio más integral. El presente trabajo estudia el problema de ruteo de vehículos bajo un enfoque multi-objetivo, en el cual se incorpora además de la minimización de la distancia, el balance de carga como objetivo de optimización. Al hacer una exhaustiva revisión de la literatura del problema de ruteo de vehículos multi-objetivo se evidenció que el balance de carga es un objetivo que se ha estudiado poco y en la mayoría de los trabajos analizados, se ha considerado el balance de carga desde la perspectiva de la longitud de las rutas. Como consecuencia, en este trabajo se definió el balance de carga como la diferencia de carga entre los vehículos con mayor y menor cantidad de producto a transportar hacia los clientes. Para la caracterización del problema de ruteo de vehículos multi-objetivo, mono-depósito con balance de cargas, se desarrolló un modelo de programación entera mixta el cual se implementó en GAMS y se probó con las primeras siete instancias de Augerat et al. (1998) obteniendo resultados prometedores tanto en el enfoque mono-objetivo como en el multi-objetivo. Por otra parte, teniendo en cuenta la complejidad del problema estudiado, se desarrolló un algoritmo de Búsqueda Tabú con tamaños de lista tabú fija y dependiente del número de nodos, el cual se probó con todas las instancias de Augerat et al.