dc.date.accessioned8/28/2019 14:29
dc.date.accessioned2022-09-23T13:53:22Z
dc.date.available8/28/2019 14:29
dc.date.available2022-09-23T13:53:22Z
dc.date.created8/28/2019 14:29
dc.date.issued2011-09
dc.identifier0747-5632
dc.identifierhttps://www.sciencedirect.com/science/article/pii/S0747563210003080
dc.identifierhttp://hdl.handle.net/10818/36915
dc.identifier10.1016/j.chb.2010.06.026
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3471857
dc.description.abstractThis paper presents a proposal based on an evolutionary algorithm to impute missing observations in multivariate data. A genetic algorithm based on the minimization of an error function derived from their covariance matrix and vector of means is presented. All methodological aspects of the genetic structure are presented. An extended explanation of the design of the fitness function is provided. An application example is solved by the proposed method.
dc.languageeng
dc.publisherComputers in Human Behavior
dc.relationComputers in Human Behavior Volume 27, Issue 5, September 2011, Pages 1468-1474
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsopenAccess
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.sourceUniversidad de La Sabana
dc.sourceIntellectum Repositorio Universidad de La Sabana
dc.subjectMissing data
dc.subjectEvolutionary optimization
dc.subjectMultivariate analysis
dc.subjectMultiple data imputation
dc.titleMissing data imputation in multivariate data by evolutionary algorithms
dc.typejournal article


Este ítem pertenece a la siguiente institución