dc.contributorLópez Sotelo, Jesús Alfonso
dc.creatorCarrillo López, Cristhian David
dc.creatorCastrillón Calderón, Camilo Andrés
dc.date.accessioned2022-07-15T13:54:53Z
dc.date.available2022-07-15T13:54:53Z
dc.date.created2022-07-15T13:54:53Z
dc.date.issued2021-09-03
dc.identifierhttps://hdl.handle.net/10614/14043
dc.identifierUniversidad Autónoma de Occidente
dc.identifierRepositorio Educativo Digital
dc.identifierhttps://red.uao.edu.co/
dc.description.abstractSe desarrolló una herramienta de software que analiza imágenes diagnósticas de tipo MRI en su secuencia T1-Weighted y busca características discriminantes dentro de la anatomía cerebral presentada en las imágenes para que, de esta manera, sea posible, según el caso, determinar la presencia de atrofias en las estructuras corticales y particularmente en el hipocampo, entregando predicciones acerca de la presencia de la condición en base a las alteraciones anatómicas. Similarmente, mediante interfaces gráficas orientadas al análisis neurocientífico, fue posible visualizar e interpretar el desempeño y los resultados del aprendizaje llevado a cabo por la inteligencia artificial, confirmando las suposiciones teóricas acerca del enfoque al momento de analizar este tipo de patología y principalmente, identificando modificaciones estructurales como posibles biomarcadores de la condición o indicadores dentro del proceso de diagnóstico por neuroimagen. En síntesis, este prototipo funcional, en su fase inicial tiene la capacidad de aprender diferencias anatómicas y estructurales tanto para hombres como para mujeres (Pacientes AD y/o sujetos CN), en un rango de edad entre 65 y 75 años (buscando a futuro, analizar el deterioro cognitivo leve o MCI y posiblemente detectar nuevos biomarcadores) y ofrece, mediante software e interfaces gráficas, una visualización de los posibles focos de información determinados por el entrenamiento de las arquitecturas de redes neuronales.
dc.description.abstractA software tool was developed that analyzes MRI-type diagnostic images in their T1-Weighted sequence and looks for discriminating characteristics within the brain anatomy presented in the images so that in this way, it is possible, depending on the case, to determine the presence of atrophies. in cortical structures and particularly in the hippocampus, providing predictions about the presence of the condition based on anatomical alterations. Similarly, through graphic interfaces oriented to neuroscientific analysis, it was possible to visualize and interpret the performance and learning results carried out by artificial intelligence, confirming the theoretical assumptions about the approach when analyzing this type of pathology and mainly, identifying modifications Structural structures as possible biomarkers of the condition or indicators within the neuroimaging diagnostic process. In summary, this functional prototype, in its initial phase can learn anatomical and structural differences for both men and women (AD patients and / or CN subjects), in an age range between 65 and 75 years (looking for a future, analyzing mild cognitive impairment or MCI and possibly detecting new biomarkers) and offers, through software and graphical interfaces, a visualization of the possible sources of information determined by the training of neural network architectures
dc.languagespa
dc.publisherUniversidad Autonoma de Occidente
dc.publisherIngeniería Mecatrónica
dc.publisherIngeniería Biomédica
dc.publisherDepartamento de Automática y Electrónica
dc.publisherFacultad de Ingeniería
dc.publisherCali
dc.relationCastrillón Calderón, C. A. y Carrillo López, C. D. (2021). Detección de la enfermedad de alzheimer a partir de neuroimágenes mediante el uso de técnicas de inteligencia artificial. (Proyecto de grado). Universidad Autónoma de Occidente. Cali. Colombia
dc.relation[1] J. Feng, S.-W. Zhang & L. Chen. “Identification of Alzheimer’s Disease Based on Wavelet Transformation Energy Feature of the Structural MRI Image and NN Classifier”. Artificial Intelligence in Medicine, January, 101940. [En línea]. Disponible en https://doi.org/10.1016/j.artmed.2020.101940
dc.relation[2] I. Beheshti, Demirel, H., F. Farokhian, C. Yang, & H. Matsuda. “Structural MRI-based detection of Alzheimer’s disease using feature ranking and classification error. Computer Methods and Programs in Biomedicine”, 137, 177–193. 2016. [En línea]. Disponible en https://doi.org/10.1016/j.cmpb.2016.09.019
dc.relation[3] M. A. Ebrahimighahnavieh, S. Luo, & R. Chiong. Deep learning to detect Alzheimer’s disease from neuroimaging: A systematic literature review. Computer Methods and Programs in Biomedicine, 187, 105242. 2020. [En línea]. Disponible en https://doi.org/10.1016/j.cmpb.2019.105242
dc.relation[4] A. Abrol, M. Bhattarai, A. Fedorov, Y. Du, S. Plis, & V. Calhoun. “Deep residual learning for neuroimaging: An application to predict progression to Alzheimer’s disease. Journal of Neuroscience Methods”, 339, April 2020. 108701. [En línea]. Disponible en https://doi.org/10.1016/j.jneumeth.2020.108701
dc.relation[5] T. Altaf, S. M. Anwar, N. Gul, Majeed, M. N., & Majid, M. “Multi-class Alzheimer’s disease classification using image and clinical features. Biomedical Signal Processing and Control”, 43, 64–74. 2018. [En línea]. Disponible en https://doi.org/10.1016/j.bspc.2018.02.019
dc.relation[6] R. A. Wilmer; M. O. Bertha y P. M. Edwin. “Generalidades de las redes neuronales artificiales”. En: Redes neuronales artificiales aplicadas al reconocimiento de patrones. 1 ed. Machala-Ecuador: Editorial UTMACH, 2018, p. 19-21. ISBN: 978-9942- 24-100-9. [En línea]. Disponible en https://www.researchgate.net/publication/327703478_Capitulo_1_Generalidades_de_las_redes_neuronales_artificiales
dc.relation[7] G. Uysal, & M. Ozturk, “Hippocampal atrophy-based Alzheimer’s disease diagnosis via machine learning methods. Journal of Neuroscience Methods”, 337, February 2020. 108669. [En línea]. Disponible en https://doi.org/10.1016/j.jneumeth.2020.108669
dc.relation[8] X. Dou, H. Yao, F. Feng, P. Wang, B. Zhou, D. Jin, Z. Yang, J. Li, C. Zhao, L. Wang, N. An, B. Liu, X. Zhang, & Y. Liu, “Characterizing white matter connectivity in Alzheimer’s disease and mild cognitive impairment: An automated fiber quantification analysis with two independent datasets”. Cortex, 129, 390–405. 2020. [En línea]. Disponible en https://doi.org/10.1016/j.cortex.2020.03.032
dc.relation[9] M. Raza, M. Awais, W. Ellahi, N. Aslam, H. X. Nguyen, & H. Le-Minh, “Diagnosis and monitoring of Alzheimer’s patients using classical and deep learning techniques. Expert Systems with Applications, 136, 353–364. 2019. [En línea]. Disponible en https://doi.org/10.1016/j.eswa.2019.06.038
dc.relation[10] X. Wu, J. Li, N. Ayutyanont, et al. “The receiver operational characteristic for binary classification with multiple indices and its application to the neuroimaging study of Alzheimer’s disease”. IEEE/ACM Trans Comput Biol Bioinf, 2013. 10(1):173–80.
dc.relation[11] F. Zhang, S. Tian, S. Chen, et al. “Voxel-based morphometry: improving the diagnosis of Alzheimer’s disease based on an extreme learning machine method from the ADNI cohort”. Neuroscience 2019;414:273–9.
dc.relation[12] N. E. Kadmiri, N. Said, I. Slassi, et al. “Biomarkers for Alzheimer disease: classical and novel candidates’ review”. Neuroscience 2018. 370:181–90.
dc.relation[13] D. Arifoglu, A. Bouchachia, “Detection of abnormal behaviour for dementia sufferers using convolutional neural networks”. Artif Intell Med 2019. 94:88–95.
dc.relation[14] J. Bernal, K. Kushibar, D. S. Asfaw, et al. “Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review”. Artif Intell Med 2019. 95:64–81.
dc.relation[15] X. Li, L. Shen, X. Xie, et al. Multi-resolution convolutional networks for chest X-ray radiograph based lung nodule detection. Artif Intell Med, 2020. 103:101744.
dc.relation[16] "La inteligencia artificial ya permite diagnosticar la enfermedad de Alzheimer o Parkinson | Qmayor", Qmayor, 2021. [En línea]. Disponible en https://www.qmayor.com/salud/la-inteligencia-artificial-ya-permite-diagnosticar-la-enfermedad-de-alzheimer-o-parkinson/.
dc.relation[17] "Que es PyTorch y por que tienes que comenzar a utilizarlo - Cleverpy", Cleverpy Machine Learning, 2021. [En línea]. Disponible en https://cleverpy.com/que-es-pytorch-y-como-se-instala/.
dc.relation[18] L. Liu, S. Zhao, H. Chen, & A. Wang, “A new machine learning method for identifying Alzheimer’s disease. Simulation Modelling Practice and Theory”, 99, October 2021. 102023. [En línea]. Disponible en https://doi.org/10.1016/j.simpat.2019.102023
dc.relation[19] J. Brownlee, "A Gentle Introduction to k-fold Cross-Validation", Machine Learning Mastery, 2021. [En línea]. Disponible en https://machinelearningmastery.com/k-fold-cross-validation/#:~:text=Cross%2Dvalidation%20is%20a%20resampling,k%2Dfold%20cross%2Dvalidation.
dc.relation[20] S. PATEL. “Machine Learning 101. Chapter 2. SVM (Support Vector Machine)” – Theory [blog]. Medium. 03 de mayo de 2017. [En línea]. Disponible en https://medium.com/machine-learning-101/chapter-2-svm-support-vector-machine-theory-f0812effc72
dc.relation[21] A. Joaquín, “Máquinas de Vector Soporte (Support Vector Machines, SVMs)” [blog]. Ciencia de datos. Abril de 2017. [En línea]. Disponible en https://www.cienciadedatos.net/documentos/34_maquinas_de_vector_soporte_support_vector_machines#coste_computacional_de_svm
dc.relation[22] M. Liu, F. Li, H. Yan, K. Wang, Y. Ma, L. Shen, & M. Xu, “A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease”. NeuroImage, 208, August 2018. [En línea]. Disponible en https://doi.org/10.1016/j.bspc.2018.02.019https://doi.org/10.1016/j.neuroimage.2019.116459
dc.relation[23] D. FLORES et al. “Prediciendo la Actividad Cardíaca de la Almeja Tivela stultorum con Digoxina utilizando redes neuronales artificiales”. En: Revista Mexicana de Ingeniería Biomédica. 2017, vol. 38, nro. 1, p. 208-216. [En línea]. Disponible en http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-95322017000100208#aff1
dc.relation[24] J. Nalepa, P. R. Lorenzo, M. Marcinkiewicz, et al. “Fully-automated deep learning-powered system for DCE-MRI analysis of brain tumors”. Artif Intell Med 2020. 102:101769.
dc.relation[25] S. Sengupta, A. Singh, H. A. Leopold, et al. “Ophthalmic diagnosis using deep learning with fundus images – a critical review”. Artif Intell Med 2020. 102:101758.
dc.relation[26] D. Arifoglu, A. Bouchachia, “Detection of abnormal behaviour for dementia sufferers using convolutional neural networks”. Artif Intell Med 2019. 94:88–95.
dc.relation[27] J. Bernal, K. Kushibar, D. S. Asfaw, et al. “Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review”. Artif Intell Med 2019. 95:64–81.
dc.relation[28] J. B. Lamy, B. Sekar, G. Guezennec, et al. “Explainable artificial intelligence for breast cancer: a visual case-based reasoning approach”. Artif Intell Med 2019. 94:42–53.
dc.relation[29] G. V. Sherbet, W. L. Woo, S. S. Dlay. “Application of artificial intelligence-based technology in cancer management: a commentary on the deployment of artificial neural networks”. Anticancer Res 2018. 38(12):6607–13.
dc.relation[30] "Neuroimaging in Python - Pipelines and Interfaces — nipy pipeline and interfaces package", Nipype.readthedocs.io, 2021. [En línea]. Disponible en https://nipype.readthedocs.io/en/latest/.
dc.relation[31] M. MOHAMMED, M. B. KHAN, y E. B. M. BASHIER, “Machine Learning: Algorithms and Applications”. 1 ed. Boca Raton: CRC Press 2016. [En línea]. Disponible en https://www.researchgate.net/publication/303806260_Machine_Learning_Algorithms_and_Applications
dc.relation[32] B. Jason. “Machine Learning: Hands-On for Developers and Technical Professionals”. John Wiley & Sons, 2014. [En línea]. Disponible en https://doc.lagout.org/science/Artificial%20Intelligence/Machine%20learning/Machine%20Learning%20Hands-On%20for%20Developers%20and%20Technical%20Professionals%20%5BBell%202014-11-03%5D.pdf
dc.relation[33] T. R. Isabella, 2021. Red.uao.edu.co. [En línea]. Disponible en https://red.uao.edu.co/bitstream/handle/10614/12751/T09585.pdf;jsessionid=6B0501E9AE9FB8ADB9B9D941CF3A1373?sequence=5.
dc.relation[34] T. Claudio y T. Germán. “Redes Neuronales Artificiales”. En: Revista de Educación Matemática. Octubre 13 de 2009, vol. 24, nro. 3. [En línea]. Disponible en https://revistas.unc.edu.ar/index.php/REM/article/view/10280/10979
dc.relation[35] R. A. Wilmer; M. O. Bertha y P. M. Edwin. “Generalidades de las redes neuronales artificiales”. En: Redes neuronales artificiales aplicadas al reconocimiento de patrones. 1 ed. Machala-Ecuador: Editorial UTMACH, 2018, p. 19-21. ISBN: 978-9942-24-100-9. [En línea]. Disponible en https://www.researchgate.net/publication/327703478_Capitulo_1_Generalidades_de_las_redes_neuronales_artificiales
dc.relation[36] S. Emilio y B. Antonio. Redes neuronales artificiales. En: Autores científico-técnicos yacadémicos, 2007. p. 25-33. [En línea]. Disponible en https://www.acta.es/medios/articulos/informatica_y_computacion/019023.pdf
dc.relation[37] "Las redes neuronales artificiales: fundamentos teóricos y aplicaciones prácticas (Book, 2008) [WorldCat.org]", Worldcat.org, 2021. [En línea]. Disponible en https://www.worldcat.org/title/redes-neuronales-artificiales-fundamentos-teoricos-y-aplicaciones-practicas/oclc/433872848. ISBN: 978-84-9745-246-533
dc.relation[38] A. Eder; S. Alexei y S. Edgar. “Principios y características de las redes neuronales artificiales”. En: Desarrollo e Innovación en Ingeniería. 2 ed. Medellín – Antioquia: Editorial IAI, 2017. 173 p. ISBN: 978-958-59127-5-5. [En línea]. Disponible en: https://www.researchgate.net/publication/331498946_Principios_y_caracteristicas_de_las_redes_neuronales_artificiales
dc.relation[39] A. B. Jamie. “Redes Neuronales”. Universidad de Guadalajara. [En línea]. Disponible en http://www.cucei.udg.mx/sites/default/files/pdf/toral_barrera_jamie_areli.pdf
dc.relation[40] L. PARADZHANYAN, “Demystifying Deep Learning and Artificial Intelligence” [blog]. The New Stack. [En línea]. Disponible en https://thenewstack.io/demystifying-deep-learning-and-artificial-intelligence/
dc.relation[41] S. Emilio y B. Antonio. “Redes neuronales artificiales”. En: Autores científico-técnicos y académicos, 2007. p. 25-33. [En línea]. Disponible en https://www.acta.es/medios/articulos/informatica_y_computacion/019023.pdf
dc.relation[42] S. Vivienne et. al. “Various forms of nonlinear activation functions [imagen]. Efficient Processing of Deep Neural Networks: A Tutorial and Survey”. En: Proceedings of the IEEE. Diciembre, 2017. pp. 2295-2329 DOI 10.1109/jproc.2017.2761740
dc.relation[43] G. Ian, B. Yoshua y C. Aaron. “Deep Learning”. MIT Press, 2016. Capítulo 9, Convolutional Networks. p. 326 - 366. [En línea]. Disponible en http://www.deeplearningbook.org
dc.relation[44] N. Jiquan et. al. “Convolutional Neural Network”. “Unsupervised Feature Learning and Deep Learning Tutorial”. Stanford University. [En línea]. Disponible en http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
dc.relation[45] P. M. Óscar. “Redes Neuronales Convolucionales Profundas para el Reconocimiento de Emociones en Imágenes”. Máster Universitario en Inteligencia Artificial. Madrid: Escuela Técnica Superior de Ingenieros Informáticos. Universidad Politécnica de Madrid. 2018. [En línea]. Disponible en http://oa.upm.es/51441/1/TFM_OSCAR_PICAZO_MONTOYA.pdf
dc.relation[46] U. Jesús, “Deep Learning básico con Keras (Parte 2): Convolutional Nets [imagen]”. [En linea]. Disponible en: https://enmilocalfunciona.io/deep-learning-basico-con-keras-parte-2-convolutionalnets/
dc.relation[47] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large- scale image recognition," arXiv preprint arXiv:1409.1556, 2014.
dc.relation[48] L. Oliver, “CS343: Neural Networks – Convolution and Max Pooling [diapositivas]”. Colby College. Otoño 2019. [En linea]. Disponible en: http://cs.colby.edu/courses/F19/cs343/lectures/lecture11/Lecture11Slides.pdf
dc.relation[49] S. Nitish et.al. “Dropout: A simple Way to Prevent Neural Networks from Overfitting”. En: Journal of Machine Learning Research. 2014, vol. 15, p. 1929-1958. [En línea]. Disponible en https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf
dc.relation[50] I. Sergey, S. Christian. “Batch normalization: Accelerating deep network training by reducing internal covariate shift”. En: 32nd International Conference on Machine Learning, ICML 2015, 1, 448-456. [En línea]. Disponible en http://arxiv.org/abs/1502.03167
dc.relation[51] M. H., José. Regularización Lasso L1, Ridge L2 y ElasticNet [blog]. IArtificial.net. [En línea]. Disponible en https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf
dc.relation[52] G. Huang, Z. Liu, L. Van Der Maaten , K.Q. Weinberger , “Densely connected convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition”, 1, 2017, pp. 4700–4708 .
dc.relation[53] Y. LeCun, L. Bottou , Y. Bengio , P. Haffner , “Gradient-based learning applied to document recognition”, Proc. IEEE 86 (11) (1998) 2278–2324.
dc.relation[54] S. Karen; V. Andrea y Z. Andrew. “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”. [En linea]. Disponible en: https://arxiv.org/pdf/1312.6034.pdf
dc.relation[55] Z. Bolei et. al.” Learning Deep Features for Discriminative Localization”. En: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Diciembre, 2015. p. 2921–2929. [en línea]]. Disponible en Internet: http://cnnlocalization.csail.mit.edu/Zhou_Learning_Deep_Features_CVPR_2016_p aper.pdf
dc.relation[56] S. Ramprasaath et. al. “Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization”. En: International Journal of Computer VIsion (IJCV). Octubre, 2019. p. 336-359 [En linea]. Disponible en Internet: https://arxiv.org/abs/1610.02391
dc.relation[57] "Que es PyTorch y por que tienes que comenzar a utilizarlo - Cleverpy", Cleverpy Machine Learning, 2021. [En línea]. Disponible en https://cleverpy.com/que-es-pytorch-y-como-se-instala/.
dc.relation[58] "Neuroimaging in Python - Pipelines and Interfaces — nipy pipeline and interfaces package", Nipype.readthedocs.io, 2021. [En línea]. Disponible en https://nipype.readthedocs.io/en/latest/.
dc.relation[59] "Clinica", Clinica.run, 2021. [En línea]. Disponible en http://www.clinica.run/.
dc.relation[60] "FSL - FslWiki", Fsl.fmrib.ox.ac.uk, 2021. [En línea]. Disponible en https://fsl.fmrib.ox.ac.uk/fsl/fslwiki.
dc.relation[61] "dcm2nii DICOM to NIfTI conversion", People.cas.sc.edu, 2021. [En línea]. Disponible en https://people.cas.sc.edu/rorden/mricron/dcm2nii.html.
dc.relation[62] "NITRC: MRIcron: Tool/Resource Info", Nitrc.org, 2021. [En línea]. Disponible en https://www.nitrc.org/projects/mricron
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos reservados - Universidad Autónoma de Occidente, 2021
dc.subjectIngeniería Mecatrónica
dc.subjectIngeniería Biomédica
dc.titleDeteccion de la enfermedad de Alzheimer a partir de neuroimagenes mediante el uso de tecnicas de Inteligencia Artificial
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución