dc.creatorSánchez Cano, Robert
dc.creatorPorras Montenegro, Nelson
dc.date.accessioned2020-03-18T23:04:14Z
dc.date.accessioned2022-09-22T18:52:21Z
dc.date.available2020-03-18T23:04:14Z
dc.date.available2022-09-22T18:52:21Z
dc.date.created2020-03-18T23:04:14Z
dc.date.issued2012-12
dc.identifierSánchez Cano, Robert; Porras Montenegro, Nelson. Ga1- xInxAsySb1- y/GaSb spherical quantum dot in a magnetic field. En: Revista Mexicana de Física. Volumen 58, número 2, (diciembre 2012); páginas 147-150
dc.identifierhttp://red.uao.edu.co//handle/10614/12133
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3460058
dc.description.abstractQuaternary semiconductor alloys type-I are appropriated materials for heterostructure devices because they provide a natural form to tune the magnitude of the band gap so that it can operate in the mid-infrared (mid-IR) wavelength range. However electron spin degree of freedom and the electron spin splitting g-factor provide a new pathway to the development of a practical quantum communication systems, because the effective g-factor for electrons in III-V semiconductors vary as a function of the chemical concentration. We investigated theoretically electron g-factor in bulk Ga(1-x)In(x)As(y)Sb(1-y) matched to GaSb and the Zeeman effect as well as the Landau levels in GaSb/Ga(1-x)In(x)As(y)Sb(1-y)/GaSb spherical quantum dot heterostructure under the framework of Kane eight-band effective-mass model, in which the mixing of the states in the lower conduction band and the highest valence bands is taken into account. Our calculations show that bulk electron g-factor values are in the range between the electron g-factor measured in bulk GaSb when x -- 0 (g =-9.25) and that measured in InAs when x --1 (g =-18.08), but there is a notable minimum in the g-factor value (g -- -23.14) at x -- 0 . 67. In GaSb/Ga(1-x)In(x)As(y)Sb(1-y)/GaSb spherical quantum dot our calculations show that the electron g-factor decreases as the radius increases reaching the value for the quaternary in bulk for a given In concentration, x, and increases when the radius decreases, approaching to the value in the barrier material, when R -- 0. Also for higher values of concentration of In, the g-factor as a function of R moves to the g-factor bulk limit
dc.languageeng
dc.relationM.P. Mikhailova, K.D. Moiseev, and Y.P. Yakovlev, Semicond. Sci. Technol. 19 (2004) R109
dc.relationI.A. Andreev, N.D. Il‘inskaya, E.V. Kunitsyna, M.P. Mikhailova and Yu. P. Yakovlev, Semicond. 37 (2003) 949
dc.relationR. Magri, A. Zunger and H. Kroemer, J. Appl. Phys. 98 (2005) 043701
dc.relationC. Hermann and C. Weisbuch, Phys. Rev. B 15 (1977) 823
dc.relationA. V. Rodina, Al. L. Efros and A. Yu. Alekseev, Phys. Rev. B 67 (2003) 155312
dc.relationC.R. Pidgeon and R.N. Brown, Phys. Rev. 146 (1966) 575
dc.relationL.M. Roth, B. Lax and S. Zwerdling, Phys. Rev. 114 (1959) 90
dc.relationA.A. Kiselev and E.L. Ivchenko, Phys. Rev. B 58 (1998) 16353
dc.relationRevista Mexicana de Física. Volumen 58, número 2, (diciembre 2012); páginas 147-150
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos Reservados - Universidad Autónoma de Occidente
dc.titleGa1- xInxAsySb1- y/GaSb spherical quantum dot in a magnetic field
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución