dc.creatorLuna Vera, Fernando
dc.creatorVera Mondragón, Bairo
dc.creatorCorrea Aguirre, Juan Pablo
dc.creatorCaicedo Cano, Carolina
dc.creatorHidalgo Salazar, Miguel Angel
dc.date.accessioned2021-09-28T14:24:54Z
dc.date.accessioned2022-09-22T18:51:04Z
dc.date.available2021-09-28T14:24:54Z
dc.date.available2022-09-22T18:51:04Z
dc.date.created2021-09-28T14:24:54Z
dc.date.issued2020-07
dc.identifier20734360
dc.identifierhttps://hdl.handle.net/10614/13275
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3459704
dc.description.abstractThis study explores the reprocessing behavior of polypropylene-sugarcane bagasse biocomposites using neat and chemically treated bagasse fibers (20 wt.%). iocomposites were reprocessed 5 times using the extrusion process followed by injection molding. The mechanical properties indicate that microfibers bagasse fibers addition and chemical treatments generate improvements in the mechanical properties, reaching the highest performance in the third cycle where the flexural modulus and flexural strength increase 57 and 12% in comparison with neat PP. differential scanning calorimetry (DSC) and TGA characterization show that bagasse fibers addition increases the crystallization temperature and thermal stability of the biocomposites 7 and 39 °C respectively, without disturbing the melting process of the PP phase for all extrusion cycles. The rheological test shows that viscosity values of PP and biocomposites decrease progressively with extrusion cycles; however, Cole–Cole plots, dynamic mechanical analysis (DMA), width at half maximum of tan delta peaks and SEM micrographs show that chemical treatments and reprocessing could improve fiber dispersion and fiber–matrix interaction. Based on these results, it can be concluded that recycling potential of polypropylene-sugarcane bagasse biocomposites is huge due to their mechanical, thermal and rheological performance resulting in advantages in terms of sustainability and life cycle impact of these materials
dc.languageeng
dc.publisherPolymers
dc.publisherBasel
dc.relationVolumen 12, número 7 (2020)
dc.relation25
dc.relationNúmero 7
dc.relation1
dc.relationVolumen 12
dc.relationCorrea Aguirre, J.P., Luna Vera F., Caicedo, C., Vera-Mondragón, B., Hidalgo Salazar, M.A. (2020). The effects of reprocessing and fiber treatments on the properties of polypropylene sugarcane bagasse biocomposites. Polymers, (Vol 12 (7), pp.1-25. doi:10.3390/polym12071440
dc.relationPolymers
dc.relationMochane, M.J.; Mokhena, T.C.; Mokhothu, T.H.; Mtibe, A.; Sadiku, E.R.; Ray, S.S.; Ibrahim, I.D.; Daramola, O.O. Recent progress on natural fiber hybrid composites for advanced applications: A review. Express Polym. Lett. 2019, 13, 159–198, doi:10.3144/expresspolymlett.2019.15.
dc.relationPickering, K.L.; Efendy, M.G.A.; Le, T.M. A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part A Appl. Sci. Manuf. 2016, 83, 98–112, doi:10.1016/J.COMPOSITESA.2015.08.038.
dc.relationHidalgo-Salazar, M.A.; Correa-Aguirre, J.P.; Montalvo-Navarrete, J.M.; Lopez-Rodriguez, D.F.R.-G.A. Recycled Polypropylene-Coffee Husk and Coir Coconut Biocomposites: Morphological, Mechanical, Thermal and Environmental Studies. In Thermosoftening Plastics; IntechOpen: London, 2020.
dc.relationKC, B.; Faruk, O.; Agnelli, J.A.M.; Leao, A.L.; Tjong, J.; Sain, M. Sisal-glass fiber hybrid biocomposite: Optimization of injection molding parameters using Taguchi method for reducing shrinkage. Compos. Part A Appl. Sci. Manuf. 2016, 83, 152–159, doi:10.1016/J.COMPOSITESA.2015.10.034.
dc.relationHidalgo-Salazar, M.A.; Correa, J.P. Mechanical and thermal properties of biocomposites from nonwoven industrial Fique fiber mats with Epoxy Resin and Linear Low Density Polyethylene. Results Phys. 2018, 8, 461–467, doi:10.1016/J.RINP.2017.12.025.
dc.relationHidalgo-Salazar, M.; Luna-Vera, F.; Pablo Correa-Aguirre, J. Biocomposites from Colombian Sugarcane Bagasse with Polypropylene: Mechanical, Thermal and Viscoelastic Properties. In Characterizations of Some Composite Materials; IntechOpen: London, 2019.
dc.relationRadoor, S.; Karayil, J.; Rangappa, S.M.; Siengchin, S.; Parameswaranpillai, J. A review on the extraction of pineapple, sisal and abaca fibers and their use as reinforcement in polymer matrix. Express Polym. Lett. 2020, 14, 309–335, doi:10.3144/expresspolymlett.2020.27.
dc.relationBeigbeder, J.; Soccalingame, L.; Perrin, D.; Bénézet, J.C.; Bergeret, A. How to manage biocomposites wastes end of life? A life cycle assessment approach (LCA) focused on polypropylene (PP)/wood flour and polylactic acid (PLA)/flax fibres biocomposites. Waste Manag. 2019, 83, 184–193, doi:10.1016/j.wasman.2018.11.012.
dc.relationSapuan, S.M; Chapter 6 - Materials Selection for Composites: Concurrent Engineering Perspective, In: Composite Materials, Butterworth-Heinemann: Oxford 2017.
dc.relationVäisänen, T.; Das, O.; Tomppo, L. A review on new bio-based constituents for natural fiber-polymer composites. J. Clean. Prod. 2017, 149, 582–596, doi:10.1016/J.JCLEPRO.2017.02.132.
dc.relationCorrea, J.P.; Montalvo-Navarrete, J.M.; Hidalgo-Salazar, M.A. Carbon footprint considerations for biocomposite materials for sustainable products: A review. J. Clean. Prod. 2018, doi:10.1016/J.JCLEPRO.2018.10.099.
dc.relationChaitanya, S.; Singh, I.; Song, J. Il Recyclability analysis of PLA/Sisal fiber biocomposites. Compos. Part B Eng. 2019, 173, 106895, doi:10.1016/j.compositesb.2019.05.106.
dc.relationUitterhaegen, E.; Parinet, J.; Labonne, L.; Mérian, T.; Ballas, S.; Véronèse, T.; Merah, O.; Talou, T.; Stevens, C.V.; Chabert, F.; et al. Performance, durability and recycling of thermoplastic biocomposites reinforced with coriander straw. Compos. Part A Appl. Sci. Manuf. 2018, 113, 254–263, doi:10.1016/j.compositesa.2018.07.038.
dc.relationHidalgo Salazar, M.A.; Muñoz Velez, M.F.; Quintana Cuellar, K.J. Análisis mecánico del compuesto polietileno aluminio reforzado con fibras cortas de fique en disposición bidimensional (Mechanical analysis of polyethylene aluminum composite reinforced with short fique fibers available a in two-dimensional arrangement). Rev. Latinoam. Metal. Mater. 2011, 32, 89–95.
dc.relationFAO Food Outlook: Sugar chapter Available online: http://www.fao.org/fileadmin/templates/est/COMM_MARKETS_MONITORING/Sugar/Documents/sugar_assessment_food_outlook_may_2019.pdf (accessed on Apr 3, 2020).
dc.relationCarlos Cueva-Orjuela, J.; Hormaza-Anaguano, A.; Merino-Restrepo, A. Sugarcane bagasse and its potential use for the textile effluent treatment. Rev. DYNA 2017, 84, 291–297, doi:10.15446/dyna.v84n203.61723.
dc.relationLatif, R.; Wakeel, S.; Zaman Khan, N.; Noor Siddiquee, A.; Lal Verma, S.; Akhtar Khan, Z. Surface treatments of plant fibers and their effects on mechanical properties of fiber-reinforced composites: A review. J. Reinf. Plast. Compos. 2019, 38, 15–30, doi:10.1177/0731684418802022.
dc.relationMuñoz-Vélez, M.; Hidalgo-Salazar, M.; Mina-Hernández, J.; Muñoz-Vélez, M.F.; Hidalgo-Salazar, M.A.; Mina-Hernández, J.H. Effect of Content and Surface Modification of Fique Fibers on the Properties of a Low-Density Polyethylene (LDPE)-Al/Fique Composite. Polymers 2018, 10, 1050, doi:10.3390/polym10101050.
dc.relationAnggono, J.; Sugondo, S.; Sewucipto, S.; Purwaningsih, H.; Henrico, S. The use of sugarcane bagasse in PP matrix composites: A comparative study of bagasse treatment using calcium hydroxide and sodium hydroxide on composite strength. AIP Conference Proceedings. 2017, 1788, 030055 https://doi.org/10.1063/1.4968308
dc.relationde Carvalho Neto, A.G.V.; Ganzerli, T.A.; Cardozo, A.L.; Fávaro, S.L.; Pereira, A.G.B.; Girotto, E.M.; Radovanovic, E. Development of composites based on recycled polyethylene/sugarcane bagasse fibers. Polym. Compos. 2014, 35, 768–774, doi:10.1002/pc.22720.
dc.relationZainal, M.; Santiagoo, R.; Ayob, A.; Ghani, A.A.; Mustafa, W.A.; Othman, N.S. Thermal and mechanical properties of chemical modification on sugarcane bagasse mixed with polypropylene and recycle acrylonitrile butadiene rubber composite. J. Thermoplast. Compos. Mater. 2019, 089270571983207, doi:10.1177/0892705719832072.
dc.relationAchilias, D.S.; Antonakou, E.; Roupakias, C.; Megalokonomos, P.; Lappas, A. Recycling techniques of polyolefins from plastic wastes. Glob. Nest J. 2008, 10, 114–122, doi:10.30955/gnj.000468.
dc.relationMartín-Alfonso, J.E.; Franco, J.M. Influence of polymer reprocessing cycles on the microstructure and rheological behavior of polypropylene/mineral oil oleogels. Polym. Test. 2015, 45, 12–19, doi:10.1016/j.polymertesting.2015.04.016.
dc.relationLila, M.K.; Singhal, A.; Banwait, S.S.; Singh, I. A recyclability study of bagasse fiber reinforced polypropylene composites. Polym. Degrad. Stab. 2018, 152, 272–279, doi:10.1016/j.polymdegradstab.2018.05.001.
dc.relationHidalgo-Salazar, M.A.; Salinas, E. Mechanical, thermal, viscoelastic performance and product application of PP- rice husk Colombian biocomposites. Compos. Part B Eng. 2019, 176, 107135, doi:10.1016/J.COMPOSITESB.2019.107135.
dc.relationMazian, B.; Bergeret, A.; Benezet, J.C.; Malhautier, L. Impact of field retting and accelerated retting performed in a lab-scale pilot unit on the properties of hemp fibres/polypropylene biocomposites. Ind. Crops Prod. 2020, 143, 111912, doi:10.1016/j.indcrop.2019.111912.
dc.relationBlaine, Roger, L. Thermal applications note - Polymer heat of fusion Available online: http://www.tainstruments.com/pdf/literature/TN048.pdf (accessed on Jul 15, 2019).
dc.relationHodgkinson, J.M. Testing the strength and stiffness of polymer matrix composites. In Failure Mechanisms in Polymer Matrix Composites; Elsevier: Amsterdam, The Netherlands, 2012; pp. 129–182.
dc.relationCerqueira, E.F.; Baptista, C.A.R.P.; Mulinari, D.R. Mechanical behaviour of polypropylene reinforced sugarcane bagasse fibers composites. Procedia Eng. 2011, 10, 2046–2051, doi:10.1016/J.PROENG.2011.04.339.
dc.relationHidalgo, M.A.; Muñoz, M.F.; Quintana, K.J. Mechanical behavior of polyethylene aluminum composite reinforced with continuous agro fique fibers. Rev. Lat. Met. Mat. 2011, 31, 187–194.
dc.relationHidalgo, M.; Muñoz, M.; Quintana, K. Mechanical analysis of polyethylene aluminum composite reinforced with short fique fibers available a in two-dimensional arrangement. Rev. Latinoam. Metal. Mater. 2012, 32, 89–95.
dc.relationBourmaud, A.; Baley, C. Investigations on the recycling of hemp and sisal fibre reinforced polypropylene composites. Polym. Degrad. Stab. 2007, 92, 1034–1045, doi:10.1016/j.polymdegradstab.2007.02.018.
dc.relationYang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788, doi:10.1016/j.fuel.2006.12.013.
dc.relationFernandes Pereira, P.H.; Cornelis, H.; Voorwald, J.; Odila, M.; Cioffi, H.; Mulinari, D.R.; Da Luz, S.M.; Lucia, M.; Pinto, C.; Silva, D. Sugarcane Bagasse Pulping and Bleaching: Thermal and Chemical Characterization. BioRes 2011, 6, 2741-2482. 35. Ramamoorthy, S.K.; Skrifvars, M.; Persson, A. A Review of Natural Fibers Used in Biocomposites: Plant, Animal and Regenerated Cellulose Fibers. Polym. Rev. 2015, 55, 107–162, doi:10.1080/15583724.2014.971124.
dc.relationHidalgo-Salazar, M.A.; Munõz, M.F.; Mina, J.H. Influence of Incorporation of Natural Fibers on the Physical, Mechanical, and Thermal Properties of Composites LDPE-Al Reinforced with Fique Fibers. Int. J. Polym. Sci. 2015, doi:10.1155/2015/386325. 37. Caicedo-Cano, C.; Crespo-Delgado Lina, M.; De La Cruz-Rodríguez Hever, Á.-J.N.A. Thermo-mechanical properties of Polypropylene: Effects during reprocessing. Ing. Investig. Technol. 2017, 18, 245–252.
dc.relationDa Costa, H.M.; Ramos, V.D.; Rocha, M.C.G. Rheological properties of polypropylene during multiple extrusion. Polym. Test. 2005, 24, 86–93, doi:10.1016/j.polymertesting.2004.06.006.
dc.relationKabir, M.M.; Wang, H.; Lau, K.T.; Cardona, F. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Compos. Part B Eng. 2012, 43, 2883–2892, doi:10.1016/J.COMPOSITESB.2012.04.053.
dc.relationLuz, S.M.; Gonçalves, A.R.; Del’arco, A.P.; Ferrão, P.M.C. Composites from Brazilian natural fibers with polypropylene: Mechanical and thermal properties. Compos. Interfaces 2008, 15, 841–850, doi:10.1163/156855408786778366.
dc.relationMotaung, T.E.; Linganiso, L.Z.; John, M.; Anandjiwala, R.D.; Motaung, T.E.; Linganiso, L.Z.; John, M.; Anandjiwala, R.D. The Effect of Silane Treated Sugar Cane Bagasse on Mechanical, Thermal and Crystallization Studies of Recycled Polypropylene. Mater. Sci. Appl. 2015, 6, 724–733, doi:10.4236/msa.2015.68074.
dc.relationOsswald, T.; Rudolph, N. Polymer Rheology. Fundamentals and Applications; Hanser Publications, Munich 2015, ISBN 9781569905173.
dc.relationAres, A.; Bouza, R.; Pardo, S.G.; Abad, M.J.; Barral, L. Rheological, mechanical and thermal behaviour of wood polymer composites based on recycled polypropylene. J. Polym. Environ. 2010, 18, 318–325, doi:10.1007/s10924-010-0208-x.
dc.relationEscócio, V.A.; Pacheco, E.B.A.V.; Silva, A.L.N.; da Cavalcante, A.d.P.; Visconte, L.L.Y. Rheological Behavior of Renewable Polyethylene (HDPE) Composites and Sponge Gourd (Luffa cylindrica) Residue. Int. J. Polym. Sci. 2015, 2015, 714352, doi:10.1155/2015/714352.
dc.relationSaba, N.; Jawaid, M.; Alothman, O.Y.; Paridah, M.T. A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr. Build. Mater. 2016, 106, 149–159, doi:10.1016/J.CONBUILDMAT.2015.12.075.
dc.relationShinoj, S.; Visvanathan, R.; Panigrahi, S.; Varadharaju, N. Dynamic mechanical properties of oil palm fibre (OPF)-linear low density polyethylene (LLDPE) biocomposites and study of fibre-matrix interactions. Biosyst. Eng. 2011, 109, 99–107, doi:10.1016/j.biosystemseng.2011.02.006.
dc.relationMohanty, S.; Verma, S.K.; Nayak, S.K. Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites. Compos. Sci. Technol. 2006, 66, 538–547, doi:10.1016/j.compscitech.2005.06.014.
dc.relationXu, H.; Liu, C.Y.; Chen, C.; Hsiao, B.S.; Zhong, G.J.; Li, Z.M. Easy alignment and effective nucleation activity of ramie fibers in injection-molded poly(lactic acid) biocomposites. Biopolymers 2012, 97, 825–839, doi:10.1002/bip.22079.
dc.relationManikandan Nair, K.; Thomas, S.; Groeninckx, G. Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibres. Compos. Sci. Technol. 2001, 61, 2519–2529, doi:10.1016/S0266-3538(01)00170-1.
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos reservados - Polymers, 2020
dc.titleThe effects of reprocessing and fiber treatments on the properties of polypropylene-sugarcane bagasse biocomposites
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución